Author

# Jack Swift

Bio: Jack Swift is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Convection & Instability. The author has an hindex of 30, co-authored 77 publications receiving 11492 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this article, the authors present the first algorithms that allow the estimation of non-negative Lyapunov exponents from an experimental time series, which provide a qualitative and quantitative characterization of dynamical behavior.

8,128 citations

••

TL;DR: In this article, the effects of thermal fluctuations on the convective instability were considered, and it was shown that the Langevin equations for hydrodynamic fluctuations are equivalent, near the instability, to a model for the crystallization of a fluid in equilibrium.

Abstract: The effects of thermal fluctuations on the convective instability are considered. It is shown that the Langevin equations for hydrodynamic fluctuations are equivalent, near the instability, to a model for the crystallization of a fluid in equilibrium. Unlike the usual models, however, the free energy of the present system does not possess terms cubic in the order parameter, and therefore the system undergoes a second-order transition in mean-field theory. The effects of fluctuations on such a model were recently discussed by Brazovskii, who found a first-order transition in three dimensions. A similar argument also leads to a discontinuous transition for the convective model, which behaves two dimensionally for sufficiently large lateral dimensions. The magnitude of the jump is unobservably small, however, because of the weakness of the thermal fluctuations being considered. The relation of the present analysis to the work of Graham and Pleiner is discussed.

1,301 citations

••

TL;DR: In this article, the largest Lyapunov exponent and metric entropy of the Couette-Taylor flow data were used to show that motion is restricted to an attractor of dimension 5 for Reynolds numbers.

Abstract: Evidence is presented for low-dimensional strange attractors in Couette-Taylor flow data. Computations of the largest Lyapunov exponent and metric entropy show that the system displays sensitive dependence on initial conditions. Although the phase space is very high dimensional, analysis of experimental data shows that motion is restricted to an attractor of dimension 5 for Reynolds numbers up to 30% above the onset of chaos. The Lyapunov exponent, entropy, and dimension all generally increase with Reynolds number.

263 citations

••

TL;DR: In this article, a two-layer nonlinear theory is developed to account properly for the effect of deformation on the interface temperature profile, which is shown to be significant in microgravity and for thin liquid layers.

Abstract: Surface-tension-driven Benard (Marangoni) convection in liquid layers heated from below can exhibit a long-wavelength primary instability that differs from the more familiar hexagonal instability associated with Benard. This long-wavelength instability is predicted to be significant in microgravity and for thin liquid layers. The instability is studied experimentally in terrestrial gravity for silicone oil layers 0.007 to 0.027 cm thick on a conducting plate. For shallow liquid depths ( 0.024 cm), the system forms only the hexagonal convection cells. A two-layer nonlinear theory is developed to account properly for the effect of deformation on the interface temperature profile. Experimental results for the long-wavelength instability are compared to our two-layer theory and to a one-layer theory that accounts for the upper gas layer solely with a heat transfer coefficient. The two-layer model better describes the onset of instability and also predicts the formation of localized elevations, which the one-layer model does not predict. A weakly nonlinear analysis shows that the bifurcation is subcritical. Solving for steady states of the system shows that the subcritical pitchfork bifurcation curve never turns over to a stable branch. Numerical simulations also predict a subcritical instability and yield long-wavelength states that qualitatively agree with the experiments. The observations agree with the onset prediction of the two-layer model, except for very thin liquid layers; this deviation from theory may arise from small non-uniformities in the experiment. Theoretical analysis shows that a small non-uniformity in heating produces a large steady-state deformation (seen in the experiment) that becomes more pronounced with increasing temperature difference across the liquid. This steady-state deformation becomes unstable to the long-wavelength instability at a smaller temperature difference than that at which the undeformed state becomes unstable in the absence of non-uniformity.

235 citations

##### Cited by

More filters

••

TL;DR: In this article, the authors present the first algorithms that allow the estimation of non-negative Lyapunov exponents from an experimental time series, which provide a qualitative and quantitative characterization of dynamical behavior.

8,128 citations

••

TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.

Abstract: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented, with emphasis on comparisons between theory and quantitative experiments. Examples include patterns in hydrodynamic systems such as thermal convection in pure fluids and binary mixtures, Taylor-Couette flow, parametric-wave instabilities, as well as patterns in solidification fronts, nonlinear optics, oscillatory chemical reactions and excitable biological media. The theoretical starting point is usually a set of deterministic equations of motion, typically in the form of nonlinear partial differential equations. These are sometimes supplemented by stochastic terms representing thermal or instrumental noise, but for macroscopic systems and carefully designed experiments the stochastic forces are often negligible. An aim of theory is to describe solutions of the deterministic equations that are likely to be reached starting from typical initial conditions and to persist at long times. A unified description is developed, based on the linear instabilities of a homogeneous state, which leads naturally to a classification of patterns in terms of the characteristic wave vector q0 and frequency ω0 of the instability. Type Is systems (ω0=0, q0≠0) are stationary in time and periodic in space; type IIIo systems (ω0≠0, q0=0) are periodic in time and uniform in space; and type Io systems (ω0≠0, q0≠0) are periodic in both space and time. Near a continuous (or supercritical) instability, the dynamics may be accurately described via "amplitude equations," whose form is universal for each type of instability. The specifics of each system enter only through the nonuniversal coefficients. Far from the instability threshold a different universal description known as the "phase equation" may be derived, but it is restricted to slow distortions of an ideal pattern. For many systems appropriate starting equations are either not known or too complicated to analyze conveniently. It is thus useful to introduce phenomenological order-parameter models, which lead to the correct amplitude equations near threshold, and which may be solved analytically or numerically in the nonlinear regime away from the instability. The above theoretical methods are useful in analyzing "real pattern effects" such as the influence of external boundaries, or the formation and dynamics of defects in ideal structures. An important element in nonequilibrium systems is the appearance of deterministic chaos. A greal deal is known about systems with a small number of degrees of freedom displaying "temporal chaos," where the structure of the phase space can be analyzed in detail. For spatially extended systems with many degrees of freedom, on the other hand, one is dealing with spatiotemporal chaos and appropriate methods of analysis need to be developed. In addition to the general features of nonequilibrium pattern formation discussed above, detailed reviews of theoretical and experimental work on many specific systems are presented. These include Rayleigh-Benard convection in a pure fluid, convection in binary-fluid mixtures, electrohydrodynamic convection in nematic liquid crystals, Taylor-Couette flow between rotating cylinders, parametric surface waves, patterns in certain open flow systems, oscillatory chemical reactions, static and dynamic patterns in biological media, crystallization fronts, and patterns in nonlinear optics. A concluding section summarizes what has and has not been accomplished, and attempts to assess the prospects for the future.

6,145 citations

••

08 Feb 1999TL;DR: Support vector machines for dynamic reconstruction of a chaotic system, Klaus-Robert Muller et al pairwise classification and support vector machines, Ulrich Kressel.

Abstract: Introduction to support vector learning roadmap. Part 1 Theory: three remarks on the support vector method of function estimation, Vladimir Vapnik generalization performance of support vector machines and other pattern classifiers, Peter Bartlett and John Shawe-Taylor Bayesian voting schemes and large margin classifiers, Nello Cristianini and John Shawe-Taylor support vector machines, reproducing kernel Hilbert spaces, and randomized GACV, Grace Wahba geometry and invariance in kernel based methods, Christopher J.C. Burges on the annealed VC entropy for margin classifiers - a statistical mechanics study, Manfred Opper entropy numbers, operators and support vector kernels, Robert C. Williamson et al. Part 2 Implementations: solving the quadratic programming problem arising in support vector classification, Linda Kaufman making large-scale support vector machine learning practical, Thorsten Joachims fast training of support vector machines using sequential minimal optimization, John C. Platt. Part 3 Applications: support vector machines for dynamic reconstruction of a chaotic system, Davide Mattera and Simon Haykin using support vector machines for time series prediction, Klaus-Robert Muller et al pairwise classification and support vector machines, Ulrich Kressel. Part 4 Extensions of the algorithm: reducing the run-time complexity in support vector machines, Edgar E. Osuna and Federico Girosi support vector regression with ANOVA decomposition kernels, Mark O. Stitson et al support vector density estimation, Jason Weston et al combining support vector and mathematical programming methods for classification, Bernhard Scholkopf et al.

5,506 citations

••

5,359 citations

••

TL;DR: In this paper, the correlation exponent v is introduced as a characteristic measure of strange attractors which allows one to distinguish between deterministic chaos and random noise, and algorithms for extracting v from the time series of a single variable are proposed.

5,239 citations