scispace - formally typeset
Search or ask a question
Author

Jackson B. Gibbs

Other affiliations: Merck & Co., Duke University, University of Pennsylvania  ...read more
Bio: Jackson B. Gibbs is an academic researcher from United States Military Academy. The author has contributed to research in topics: Farnesyl Protein Transferase & Farnesyltransferase. The author has an hindex of 55, co-authored 117 publications receiving 12547 citations. Previous affiliations of Jackson B. Gibbs include Merck & Co. & Duke University.


Papers
More filters
Journal ArticleDOI
25 Jun 1993-Science
TL;DR: Selective inhibition of ras-dependent cell transformation with a synthetic organic inhibitor of FPTase is demonstrated.
Abstract: To acquire transforming potential, the precursor of the Ras oncoprotein must undergo farnesylation of the cysteine residue located in a carboxyl-terminal tetrapeptide. Inhibitors of the enzyme that catalyzes this modification, farnesyl protein transferase (FPTase), have therefore been suggested as anticancer agents for tumors in which Ras contributes to transformation. The tetrapeptide analog L-731,735 is a potent and selective inhibitor of FPTase in vitro. A prodrug of this compound, L-731,734, inhibited Ras processing in cells transformed with v-ras. L-731,734 decreased the ability of v-ras-transformed cells to form colonies in soft agar but had no effect on the efficiency of colony formation of cells transformed by either the v-raf or v-mos oncogenes. The results demonstrate selective inhibition of ras-dependent cell transformation with a synthetic organic inhibitor of FPTase.

636 citations

Journal ArticleDOI
17 Mar 2000-Science
TL;DR: There has been a tremendous increase in the authors' knowledge of the molecular mechanisms and pathophysiology of human cancer, and many of these mechanisms have been exploited as new targets for drug development in the hope that they will have greater antitumor activity with less toxicity to the patient.
Abstract: Cancer as a disease in the human population is becoming a larger health problem, and the medicines used as treatments have clear limitations. In the past 20 years, there has been a tremendous increase in our knowledge of the molecular mechanisms and pathophysiology of human cancer. Many of these mechanisms have been exploited as new targets for drug development in the hope that they will have greater antitumor activity with less toxicity to the patient than is seen with currently used medicines. The fruition of these efforts in the clinic is just now being realized with a few encouraging results.

610 citations

Journal ArticleDOI
01 Sep 1988-Nature
TL;DR: It is shown that GAP interacts preferentially with the active GTP complexes of both normal and oncogenic Harvey (Ha) ras p21 compared with the inactive GDP complexes.
Abstract: The plasma membrane-bound mammalian ras proteins of relative molecular mass 21,000 (ras p21) share biochemical and structural properties with other guanine nucleotide-binding regulatory proteins (G-proteins)1–3. Oncogenic ras p21 variants result from amino acid substitutions at specific positions that cause p21 to occur predominantly complexed to GTP in vivo. Recently, a GTPase activating protein (GAP) with cytosolic activity has been discovered that stimulates the GTPase activity of normal but not of oncogenic ras p21 (ref. 4). GAP might be either a negative regulatory agent which acts further upstream in the regulatory pathway or the downstream target of ras p21 (refs 3, 5 and 6). We have identified a protein from bovine brain with apparent relative molecular mass 125,000 that has GAP activity7. Here, using pure GAP in a kinetic competition assay, we show that GAP interacts preferentially with the active GTP complexes of both normal and oncogenic Harvey (Ha) ras p21 compared with the inactive GDP complexes. We also report the cloning and sequencing of the complementary DNA for bovine GAP. Regions of GAP share amino acid similarity with the noncatalytic domain of adenylate cyclase from the yeast Saccharomyces cerevisiae8–10 and with regions conserved between phospholipase C-148, the crk oncogene product and the nonreceptor tyrosine kinases26,27.

581 citations

Journal ArticleDOI
TL;DR: Three different isoprenyl-protein transferases are identified that are each selective for theirIsoprenoid and protein substrates, and a leucine residue at the C terminus influenced whether a CAAX protein was either farnesylated or geranylgeranylated preferentially.

567 citations

Journal ArticleDOI
TL;DR: The observation that oncogenic forms of p21 lose GTPase activity suggests that GTP hydrolysis may be a biochemical event that inactivates the growth-promoting effects of a p21 X GTP complex.
Abstract: The 21-kilodalton protein (p21) encoded by normal cellular Harvey-ras has been expressed in Escherichia coli as a fusion protein by using the pUC8 vector and has been purified to greater than 95% homogeneity by ion-exchange chromatography and gel filtration. The purified protein molecules possess intrinsic GTPase activity on the basis of the following criteria: (i) elution of the GTPase activity with p21 GDP-binding activity in two different chromatography systems, (ii) parallel thermal inactivation of GTPase activity and p21 GTP-binding activity, and (iii) immunoprecipitation of the GTPase activity with monoclonal antibodies to p21. At 37 degrees C, the rate of GTP hydrolysis by the purified normal p21 assayed in solution was 5.3-6.6 mmol/min per mol of p21. The rate of GTP hydrolysis by a form of p21 [Val12] encoded by a human oncogene was significantly lower (1.4-1.9 mmol/min per mol of p21). The presence of a threonine phosphate acceptor site at residue 59 also decreased p21 GTPase activity. For regulatory proteins that use GTP as part of their biochemical mechanism, the hydrolysis of GTP to GDP reverses the biological activity of the respective proteins. The observation that oncogenic forms of p21 lose GTPase activity suggests that GTP hydrolysis may be a biochemical event that inactivates the growth-promoting effects of a p21 X GTP complex.

540 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Glide approximates a complete systematic search of the conformational, orientational, and positional space of the docked ligand to find the best docked pose using a model energy function that combines empirical and force-field-based terms.
Abstract: Unlike other methods for docking ligands to the rigid 3D structure of a known protein receptor, Glide approximates a complete systematic search of the conformational, orientational, and positional space of the docked ligand In this search, an initial rough positioning and scoring phase that dramatically narrows the search space is followed by torsionally flexible energy optimization on an OPLS-AA nonbonded potential grid for a few hundred surviving candidate poses The very best candidates are further refined via a Monte Carlo sampling of pose conformation; in some cases, this is crucial to obtaining an accurate docked pose Selection of the best docked pose uses a model energy function that combines empirical and force-field-based terms Docking accuracy is assessed by redocking ligands from 282 cocrystallized PDB complexes starting from conformationally optimized ligand geometries that bear no memory of the correctly docked pose Errors in geometry for the top-ranked pose are less than 1 A in nearly ha

6,828 citations

Journal ArticleDOI
20 Apr 1990-Cell
TL;DR: Cet article synthese montre comment des recepteurs membranaires a activite tyrosine kinase peuvent etre impliques dans la transduction and notamment jouent le role de signal de the transduction.

5,536 citations

Journal Article
TL;DR: It appeared that ras gene mutations can be found in a variety of tumor types, although the incidence varies greatly and some evidence that environmental agents may be involved in the induction of the mutations.
Abstract: Mutations in codon 12, 13, or 61 of one of the three ras genes, H-ras, K-ras, and N-ras, convert these genes into active oncogenes. Rapid assays for the detection of these point mutations have been developed recently and used to investigate the role mutated ras genes play in the pathogenesis of human tumors. It appeared that ras gene mutations can be found in a variety of tumor types, although the incidence varies greatly. The highest incidences are found in adenocarcinomas of the pancreas (90%), the colon (50%), and the lung (30%); in thyroid tumors (50%); and in myeloid leukemia (30%). For some tumor types a relationship may exist between the presence of a ras mutation and clinical or histopathological features of the tumor. There is some evidence that environmental agents may be involved in the induction of the mutations.

5,367 citations

Journal ArticleDOI
01 Feb 1990-Nature
TL;DR: The mevalonate pathway produces isoprenoids that are vital for diverse cellular functions, ranging from cholesterol synthesis to growth control, and could be useful in treating certain forms of cancer as well as heart disease.
Abstract: The mevalonate pathway produces isoprenoids that are vital for diverse cellular functions, ranging from cholesterol synthesis to growth control. Several mechanisms for feedback regulation of low-density-lipoprotein receptors and of two enzymes involved in mevalonate biosynthesis ensure the production of sufficient mevalonate for several end-products. Manipulation of this regulatory system could be useful in treating certain forms of cancer as well as heart disease.

5,125 citations

Journal ArticleDOI
TL;DR: Comparisons to results for the thymidine kinase and estrogen receptors published by Rognan and co-workers show that Glide 2.5 performs better than GOLD 1.1, FlexX 1.8, or DOCK 4.01.
Abstract: Glide's ability to identify active compounds in a database screen is characterized by applying Glide to a diverse set of nine protein receptors. In many cases, two, or even three, protein sites are employed to probe the sensitivity of the results to the site geometry. To make the database screens as realistic as possible, the screens use sets of “druglike” decoy ligands that have been selected to be representative of what we believe is likely to be found in the compound collection of a pharmaceutical or biotechnology company. Results are presented for releases 1.8, 2.0, and 2.5 of Glide. The comparisons show that average measures for both “early” and “global” enrichment for Glide 2.5 are 3 times higher than for Glide 1.8 and more than 2 times higher than for Glide 2.0 because of better results for the least well-handled screens. This improvement in enrichment stems largely from the better balance of the more widely parametrized GlideScore 2.5 function and the inclusion of terms that penalize ligand−protei...

4,801 citations