scispace - formally typeset
Search or ask a question
Author

Jacky Wing Yip Lam

Bio: Jacky Wing Yip Lam is an academic researcher from Hong Kong University of Science and Technology. The author has contributed to research in topics: Polymer & Polymerization. The author has an hindex of 106, co-authored 619 publications receiving 44048 citations. Previous affiliations of Jacky Wing Yip Lam include University of Hong Kong & Shenzhen University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this critical review, recent progress in the area ofAIE research is summarized and typical examples of AIE systems are discussed, from which their structure-property relationships are derived.
Abstract: Luminogenic materials with aggregation-induced emission (AIE) attributes have attracted much interest since the debut of the AIE concept in 2001. In this critical review, recent progress in the area of AIE research is summarized. Typical examples of AIE systems are discussed, from which their structure–property relationships are derived. Through mechanistic decipherment of the photophysical processes, structural design strategies for generating new AIE luminogens are developed. Technological, especially optoelectronic and biological, applications of the AIE systems are exemplified to illustrate how the novel AIE effect can be utilized for high-tech innovations (183 references).

4,996 citations

Journal ArticleDOI
TL;DR: This Tutorial Review presents an overview of the AIE phenomenon and its mechanism, and summarizes the structural design and working principle of AIE biosensors developed recently.
Abstract: Fluorescent biosensors are powerful analytical tools for studying biological events in living systems. Luminescent materials with aggregation-induced emission (AIE) attributes have attracted much research interest and have been identified as a novel class of luminogens to develop fluorescent turn-on biosensors with superior sensitivity. In this Tutorial Review, we present an overview of the AIE phenomenon and its mechanism. We summarize the structural design and working principle of AIE biosensors developed recently. Typical examples of AIE biosensors are presented.

931 citations

Journal ArticleDOI
TL;DR: A win‐win strategy would be the elimination of the ACQ effect without sacrificing other functional properties of the luminophores, in the work reported here, which has developed a new approach.
Abstract: The development of efficient luminescent materials in the solid state is of both scientific and technological interest. An obstacle to their development is the notorious aggregation-caused quenching (ACQ) effect: the emission of conventional luminophores is often weakened in the solid state in comparison to in solution, due to aggregate formation in the condensed phase. [1‐3] The ACQ problem must be properly tackled, because the luminophores are commonly used as solid films in their practical applications. Various chemical, physical, and engineering approaches have been taken to frustrate luminophore aggregation. [4,5] The attachment of bulky alicyclics, encapsulation by amphiphilic surfactants, and blending with transparent polymers are widely used methods to impede aggregate formation. These processes, however, are often accompanied by severe side effects. The steric effects of bulky alicyclics, for example, can twist the conformations of the chromophoric units and jeopardize the electronic conjugation in the luminophores, and the electronic effects of the saturated surfactants and nonconjugated polymers can dilute the luminophore density and obstruct the charge transport in electroluminescence (EL) devices. The current approaches to the problem are thus far from ideal, because the ACQ effect is alleviated at the expense of other useful properties of the luminophores. A win‐win strategy would be the elimination of the ACQ effect without sacrificing other functional properties of the luminophores. In the work reported here, we have developed such a new approach. Triphenylamine (TPA) and its derivatives are luminescent when dissolved in good solvents [6] for them but become less emissive when aggregated in the solid state, and are therefore typical ACQ luminophores. [7] For

794 citations

Journal ArticleDOI
TL;DR: Boron dipyrromethene (BODIPY) derivatives 1 and 2 consisting of donor and acceptor units with dual photoresponses to solvent polarity and luminogen aggregation are developed through taking advantage of twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) processes as discussed by the authors.
Abstract: Boron dipyrromethene (BODIPY) derivatives 1 and 2 consisting of donor and acceptor units with dual photoresponses to solvent polarity and luminogen aggregation are developed through taking advantage of twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) processes. In nonpolar solvents, the locally excited (LE) states of the BODIPY luminogens emit intense green lights. Increasing solvent polarity brings the luminogens from the LE state to the TICT state, causing a large bathochromic shift in the emission color but a dramatic decrease in the emission efficiency. The red emission is greatly boosted by aggregate formation or AIE effect: addition of large amounts of water into the solutions of 1 and 2 in the polar solvents causes the luminogens to aggregate supramolecularly and to emit efficiently. The emission can be enhanced by increasing solvent viscosity and decreasing solution temperature, indicating that the AIE effect is caused by the restriction of the intramolecular ro...

794 citations

Journal ArticleDOI
TL;DR: In this article, a new class of propeller-like luminogenic molecules with aggregation-induced emission (AIE) characteristics has drawn increasing research interest, and tetraphenylethene (TPE) is an archetypal luminogen with a simple molecule structure.
Abstract: Luminescent materials with efficient solid-state emissions are important for the advancement of optoelectronics. Recently, a new class of propeller-like luminogenic molecules with aggregation-induced emission (AIE) characteristics has drawn increasing research interest. Among them, tetraphenylethene (TPE) is an archetypal luminogen with a simple molecule structure but shows a splendid AIE effect. Utilizing TPE as a building block, an effective strategy to create efficient solid-state emitters is developed. In this feature article, we review mainly our recent work on the construction of luminogenic materials from TPE and present their applications in organic light-emitting diodes. The applicability of the synthetic strategy and the utility of the resulting materials are demonstrated.

707 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Aggregation greatly boosts emission efficiency of the silole, turning it from a weak luminophor into a strong emitter.

5,916 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
TL;DR: In this critical review, recent progress in the area ofAIE research is summarized and typical examples of AIE systems are discussed, from which their structure-property relationships are derived.
Abstract: Luminogenic materials with aggregation-induced emission (AIE) attributes have attracted much interest since the debut of the AIE concept in 2001. In this critical review, recent progress in the area of AIE research is summarized. Typical examples of AIE systems are discussed, from which their structure–property relationships are derived. Through mechanistic decipherment of the photophysical processes, structural design strategies for generating new AIE luminogens are developed. Technological, especially optoelectronic and biological, applications of the AIE systems are exemplified to illustrate how the novel AIE effect can be utilized for high-tech innovations (183 references).

4,996 citations

Journal ArticleDOI
TL;DR: The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier.
Abstract: The Huisgen 1,3-dipolar cycloaddition reaction of organic azides and alkynes has gained considerable attention in recent years due to the introduction in 2001 of Cu(1) catalysis by Tornoe and Meldal, leading to a major improvement in both rate and regioselectivity of the reaction, as realized independently by the Meldal and the Sharpless laboratories. The great success of the Cu(1) catalyzed reaction is rooted in the fact that it is a virtually quantitative, very robust, insensitive, general, and orthogonal ligation reaction, suitable for even biomolecular ligation and in vivo tagging or as a polymerization reaction for synthesis of long linear polymers. The triazole formed is essentially chemically inert to reactive conditions, e.g. oxidation, reduction, and hydrolysis, and has an intermediate polarity with a dipolar moment of ∼5 D. The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier. In order to understand the reaction in detail, it therefore seems important to spend a moment to consider the structural and mechanistic aspects of the catalysis. The reaction is quite insensitive to reaction conditions as long as Cu(1) is present and may be performed in an aqueous or organic environment both in solution and on solid support.

3,855 citations

Journal ArticleDOI
TL;DR: The restriction of intramolecular rotation is identified as a main cause for the AIE effect and a series of new fluorescent and phosphorescent AIE systems with emission colours covering the entire visible spectral region and luminescence quantum yields up to unity are developed.

3,324 citations