scispace - formally typeset
Search or ask a question
Author

Jacob Joe Antony

Bio: Jacob Joe Antony is an academic researcher from Bharathidasan University. The author has contributed to research in topics: Silver nanoparticle & Leucas aspera. The author has an hindex of 8, co-authored 9 publications receiving 702 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In vivo DAL mice model showed significant increase in life span, induction of apoptosis was evidenced by acridine orange and ethidium bromide staining, and Cytotoxicity of biosynthesized AgNPs against in vitro Human epithelial carcinoma cell line (HeLa) showed a dose–response activity.

290 citations

Journal ArticleDOI
TL;DR: The current study elucidates that the synthesized AgNPs were efficient against the bacterial strains tested and showed an obvious superiority of the antibacterial potency of BAgNPs compared to the CAgNPs as denoted by the zone of inhibition (ZoI).

121 citations

Journal ArticleDOI
TL;DR: In vitro radical scavenging assay proved strong antioxidant effect of the AgNPs compared to 5% aqueous leaf extract, indicating the curing effects on CCl(4) induced liver injury.

113 citations

Journal ArticleDOI
TL;DR: Hematological and biochemical analyses revealed revival after treating with F. religiosa derived AgNPs, and anti- angiogenic activity was confirmed by observing vessel development, indicate that theAgNPs were effective in treatment of DAL.

87 citations

Journal ArticleDOI
TL;DR: Results from this study suggested that Streptomyces sp.

83 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The methods of making nanoparticles using plant extracts are reviewed, methods of particle characterization are reviewed and potential applications of the particles in medicine are discussed.

1,706 citations

Journal ArticleDOI
TL;DR: The biological synthesis via nanobiotechnology processes have a significant potential to boost nanoparticles production without the use of harsh, toxic, and expensive chemicals commonly used in conventional physical and chemical processes.
Abstract: Nanotechnology is the creation, manipulation and use of materials at the nanometre size scale (1 to 100 nm). At this size scale there are significant differences in many material properties that are normally not seen in the same materials at larger scales. Although nanoscale materials can be produced using a variety of traditional physical and chemical processes, it is now possible to biologically synthesize materials via environment-friendly green chemistry based techniques. In recent years, the convergence between nanotechnology and biology has created the new field of nanobiotechnology that incorporates the use of biological entities such as actinomycetes algae, bacteria, fungi, viruses, yeasts, and plants in a number of biochemical and biophysical processes. The biological synthesis via nanobiotechnology processes have a significant potential to boost nanoparticles production without the use of harsh, toxic, and expensive chemicals commonly used in conventional physical and chemical processes. The aim of this review is to provide an overview of recent trends in synthesizing nanoparticles via biological entities and their potential applications.

789 citations

Journal ArticleDOI
TL;DR: This review focused on the latest data regarding the biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity, unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based Nanostructure.
Abstract: During the past few years, silver nanoparticles (AgNPs) became one of the most investigated and explored nanotechnology-derived nanostructures, given the fact that nanosilver-based materials proved to have interesting, challenging, and promising characteristics suitable for various biomedical applications. Among modern biomedical potential of AgNPs, tremendous interest is oriented toward the therapeutically enhanced personalized healthcare practice. AgNPs proved to have genuine features and impressive potential for the development of novel antimicrobial agents, drug-delivery formulations, detection and diagnosis platforms, biomaterial and medical device coatings, tissue restoration and regeneration materials, complex healthcare condition strategies, and performance-enhanced therapeutic alternatives. Given the impressive biomedical-related potential applications of AgNPs, impressive efforts were undertaken on understanding the intricate mechanisms of their biological interactions and possible toxic effects. Within this review, we focused on the latest data regarding the biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity, unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based nanostructures.

773 citations

Journal ArticleDOI
TL;DR: The plants are used successfully in the synthesis of various greener nanoparticles such as cobalt, copper, silver, gold, palladium, platinum, zinc oxide and magnetite, and the biological synthesis of metallic nanoparticles is inexpensive, single step and eco-friendly methods.
Abstract: The field of nanotechnology mainly encompasses with biology, physics, chemistry and material sciences and it develops novel therapeutic nanosized materials for biomedical and pharmaceutical applications. The biological syntheses of nanoparticles are being carried out by different macro-microscopic organisms such as plant, bacteria, fungi, seaweeds and microalgae. The biosynthesized nanomaterials have been effectively controlling the various endemic diseases with less adverse effect. Plant contains abundant natural compounds such as alkaloids, flavonoids, saponins, steroids, tannins and other nutritional compounds. These natural products are derived from various parts of plant such as leaves, stems, roots shoots, flowers, barks, and seeds. Recently, many studies have proved that the plant extracts act as a potential precursor for the synthesis of nanomaterial in non-hazardous ways. Since the plant extract contains various secondary metabolites, it acts as reducing and stabilizing agents for the bioreduction reaction to synthesized novel metallic nanoparticles. The non-biological methods (chemical and physical) are used in the synthesis of nanoparticles, which has a serious hazardous and high toxicity for living organisms. In addition, the biological synthesis of metallic nanoparticles is inexpensive, single step and eco-friendly methods. The plants are used successfully in the synthesis of various greener nanoparticles such as cobalt, copper, silver, gold, palladium, platinum, zinc oxide and magnetite. Also, the plant mediated nanoparticles are potential remedy for various diseases such as malaria, cancer, HIV, hepatitis and other acute diseases.

681 citations

Journal ArticleDOI
TL;DR: A green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media using silver nitrate, polyethylene glycol, and β-D-glucose as a silver precursor, stabilizer, and reducing agent is reported.
Abstract: The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.

434 citations