scispace - formally typeset
Search or ask a question
Author

Jacob Slutsky

Other affiliations: Leibniz University of Hanover
Bio: Jacob Slutsky is an academic researcher from Goddard Space Flight Center. The author has contributed to research in topics: Gravitational wave & LIGO. The author has an hindex of 28, co-authored 81 publications receiving 4261 citations. Previous affiliations of Jacob Slutsky include Leibniz University of Hanover.


Papers
More filters
02 Feb 2017
TL;DR: The LISA Consortium as mentioned in this paper proposed a 4-year mission in response to ESA's call for missions for L3, which is an all-sky monitor and will offer a wide view of a dynamic cosmos using Gravitational Waves as new and unique messengers to unveil The Gravitational Universe.
Abstract: Following the selection of The Gravitational Universe by ESA, and the successful flight of LISA Pathfinder, the LISA Consortium now proposes a 4 year mission in response to ESA's call for missions for L3. The observatory will be based on three arms with six active laser links, between three identical spacecraft in a triangular formation separated by 2.5 million km. LISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using Gravitational Waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the infant Universe at TeV energy scales, has known sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales near the horizons of black holes, all the way to cosmological scales. The LISA mission will scan the entire sky as it follows behind the Earth in its orbit, obtaining both polarisations of the Gravitational Waves simultaneously, and will measure source parameters with astrophysically relevant sensitivity in a band from below $10^{-4}\,$Hz to above $10^{-1}\,$Hz.

935 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an up-to-date summary of the rates for all types of compact binary coalescence sources detectable by the Initial and Advanced versions of the ground-based LIGO and Virgo Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters.
Abstract: We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the Initial and Advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters, and are still uncertain The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our Galaxy These yield a likely coalescence rate of 100 per Myr per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 per Myr per MWEG to 1000 per Myr per MWEG We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our Advanced detectors Using the detector sensitivities derived from these data, we find a likely detection rate of 002 per year for Initial LIGO-Virgo interferometers, with a plausible range between 00002 and 02 per year The likely binary neutron-star detection rate for the Advanced LIGO-Virgo network increases to 40 events per year, with a range between 04 and 400 per year

918 citations

Journal ArticleDOI
Michele Armano1, Heather Audley2, G. Auger3, J. Baird4, Massimo Bassan5, Pierre Binétruy3, M. Born2, Daniele Bortoluzzi6, N. Brandt7, M. Caleno1, L. Carbone6, Antonella Cavalleri8, A. Cesarini6, Giacomo Ciani6, G. Congedo6, A. M. Cruise9, Karsten Danzmann2, M. de Deus Silva1, R. De Rosa, M. Diaz-Aguilo10, L. Di Fiore, Ingo Diepholz2, G. Dixon9, Rita Dolesi6, N. Dunbar7, Luigi Ferraioli11, Valerio Ferroni6, Walter Fichter, E. D. Fitzsimons12, R. Flatscher7, M. Freschi1, A. F. García Marín2, C. García Marirrodriga1, R. Gerndt7, Lluis Gesa10, Ferran Gibert6, Domenico Giardini11, R. Giusteri6, F. Guzmán2, Aniello Grado13, Catia Grimani14, A. Grynagier, J. Grzymisch1, I. Harrison15, Gerhard Heinzel2, M. Hewitson2, Daniel Hollington4, D. Hoyland9, Mauro Hueller6, Henri Inchauspe3, Oliver Jennrich1, Ph. Jetzer16, Ulrich Johann7, B. Johlander1, Nikolaos Karnesis2, B. Kaune2, N. Korsakova2, Christian J. Killow17, J. A. Lobo10, Ivan Lloro10, L. Liu6, J. P. López-Zaragoza10, R. Maarschalkerweerd15, Davor Mance11, V. Martín10, L. Martin-Polo1, J. Martino3, F. Martin-Porqueras1, S. Madden1, Ignacio Mateos10, Paul McNamara1, José F. F. Mendes15, L. Mendes1, A. Monsky2, Daniele Nicolodi6, Miquel Nofrarías10, S. Paczkowski2, Michael Perreur-Lloyd17, Antoine Petiteau3, P. Pivato6, Eric Plagnol3, P. Prat3, U. Ragnit1, B. Rais3, Juan Ramos-Castro18, J. Reiche2, D. I. Robertson17, H. Rozemeijer1, F. Rivas10, G. Russano6, J Sanjuán10, P. Sarra, A. Schleicher7, D. Shaul4, Jacob Slutsky19, Carlos F. Sopuerta10, Ruggero Stanga20, F. Steier2, T. J. Sumner4, D. Texier1, James Ira Thorpe19, C. Trenkel7, Michael Tröbs2, H. B. Tu6, Daniele Vetrugno6, Stefano Vitale6, V Wand2, Gudrun Wanner2, H. Ward17, C. Warren7, Peter Wass4, D. Wealthy7, W. J. Weber6, L. Wissel2, A. Wittchen2, A. Zambotti6, C. Zanoni6, Tobias Ziegler7, Peter Zweifel11 
TL;DR: The first results of the LISA Pathfinder in-flight experiment demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density.
Abstract: We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 +/- 0.1 fm s(exp -2)/square root of Hz, or (0.54 +/- 0.01) x 10(exp -15) g/square root of Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 +/- 0.3) fm square root of Hz, about 2 orders of magnitude better than requirements. At f less than or equal to 0.5 mHz we observe a low-frequency tail that stays below 12 fm s(exp -2)/square root of Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

523 citations

Journal ArticleDOI
TL;DR: This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency.
Abstract: In the months since the publication of the first results, the noise performance of LISA Pathfinder has improved because of reduced Brownian noise due to the continued decrease in pressure around the test masses, from a better correction of noninertial effects, and from a better calibration of the electrostatic force actuation. In addition, the availability of numerous long noise measurement runs, during which no perturbation is purposely applied to the test masses, has allowed the measurement of noise with good statistics down to 20 μ Hz . The Letter presents the measured differential acceleration noise figure, which is at ( 1.74 ± 0.01 ) fm s − 2 / √ Hz above 2 mHz and ( 6 ± 1 ) × 10 fm s − 2 / √ Hz at 20 μ Hz , and discusses the physical sources for the measured noise. This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency.

271 citations

Journal ArticleDOI
TL;DR: In this article, an updated search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors was presented, where ephemerides overlapping the run period were obtained using radio and X-ray observations.
Abstract: We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search ephemerides overlapping the run period were obtained for all pulsars using radio and X-ray observations. We demonstrate an updated search method that allows for small uncertainties in the pulsar phase parameters to be included in the search. We report no signal detection from any of the targets and therefore interpret our results as upper limits on the gravitational wave signal strength. The most interesting limits are those for young pulsars. We present updated limits on gravitational radiation from the Crab pulsar, where the measured limit is now a factor of seven below the spin-down limit. This limits the power radiated via gravitational waves to be less than ~2% of the available spin-down power. For the X-ray pulsar J0537-6910 we reach the spin-down limit under the assumption that any gravitational wave signal from it stays phase locked to the X-ray pulses over timing glitches, and for pulsars J1913+1011 and J1952+3252 we are only a factor of a few above the spin-down limit. Of the recycled millisecond pulsars several of the measured upper limits are only about an order of magnitude above their spin-down limits. For these our best (lowest) upper limit on gravitational wave amplitude is 2.3x10^-26 for J1603-7202 and our best (lowest) limit on the inferred pulsar ellipticity is 7.0x10^-8 for J2124-3358.

149 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

7,327 citations

Journal ArticleDOI
TL;DR: A binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

2,746 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1195 moreInstitutions (139)
TL;DR: In this paper, the authors used the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to constrain the difference between the speed of gravity and speed of light to be between $-3
Abstract: On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times {10}^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between $-3\times {10}^{-15}$ and $+7\times {10}^{-16}$ times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1–1.4 per year during the 2018–2019 observing run and 0.3–1.7 per year at design sensitivity.

2,633 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott, T. D. Abbott, Sheelu Abraham  +1145 moreInstitutions (8)
TL;DR: In this paper, the authors presented the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma during the first and second observing runs of the advanced GW detector network.
Abstract: We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma™ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6-0.7+3.2 Mâ™ and 84.4-11.1+15.8 Mâ™ and range in distance between 320-110+120 and 2840-1360+1400 Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110-3840 Gpc-3 y-1 for binary neutron stars and 9.7-101 Gpc-3 y-1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610 Gpc-3 y-1.

2,336 citations