scispace - formally typeset
Search or ask a question
Author

Jacob W. Ballway

Bio: Jacob W. Ballway is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Dysbiosis & Fatty liver. The author has an hindex of 1, co-authored 1 publications receiving 9 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the mechanisms of gut dysbiosis, leaky gut, endotoxemia, and fatty liver disease with a specific focus on the alcohol-associated pathways.
Abstract: Emerging data demonstrate the important roles of altered gut microbiomes (dysbiosis) in many disease states in the peripheral tissues and the central nervous system. Gut dysbiosis with decreased ratios of Bacteroidetes/Firmicutes and other changes are reported to be caused by many disease states and various environmental factors, such as ethanol (e.g., alcohol drinking), Western-style high-fat diets, high fructose, etc. It is also caused by genetic factors, including genetic polymorphisms and epigenetic changes in different individuals. Gut dysbiosis, impaired intestinal barrier function, and elevated serum endotoxin levels can be observed in human patients and/or experimental rodent models exposed to these factors or with certain disease states. However, gut dysbiosis and leaky gut can be normalized through lifestyle alterations such as increased consumption of healthy diets with various fruits and vegetables containing many different kinds of antioxidant phytochemicals. In this review, we describe the mechanisms of gut dysbiosis, leaky gut, endotoxemia, and fatty liver disease with a specific focus on the alcohol-associated pathways. We also mention translational approaches by discussing the benefits of many antioxidant phytochemicals and/or their metabolites against alcohol-mediated oxidative stress, gut dysbiosis, intestinal barrier dysfunction, and fatty liver disease.

32 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: CYP2E1 is one of the fifty-seven cytochrome P450 genes in the human genome and is highly conserved as discussed by the authors, which has been the focus of scientific interest due to its important endogenous function in liver homeostasis.
Abstract: CYP2E1 is one of the fifty-seven cytochrome P450 genes in the human genome and is highly conserved. CYP2E1 is a unique P450 enzyme because its heme iron is constitutively in the high spin state, allowing direct reduction of, e.g., dioxygen, causing the formation of a variety of reactive oxygen species and reduction of xenobiotics to toxic products. The CYP2E1 enzyme has been the focus of scientific interest due to (i) its important endogenous function in liver homeostasis, (ii) its ability to activate procarcinogens and to convert certain drugs, e.g., paracetamol and anesthetics, to cytotoxic end products, (iii) its unique ability to effectively reduce dioxygen to radical species causing liver injury, (iv) its capability to reduce compounds, often generating radical intermediates of direct toxic or indirect immunotoxic properties and (v) its contribution to the development of alcoholic liver disease, steatosis and NASH. In this overview, we present the discovery of the enzyme and studies in humans, 3D liver systems and genetically modified mice to disclose its function and clinical relevance. Induction of the CYP2E1 enzyme either by alcohol or high-fat diet leads to increased severity of liver pathology and likelihood to develop ALD and NASH, with subsequent influence on the occurrence of hepatocellular cancer. Thus, fat-dependent induction of the enzyme might provide a link between steatosis and fibrosis in the liver. We conclude that CYP2E1 has many important physiological functions and is a key enzyme for hepatic carcinogenesis, drug toxicity and liver disease.

56 citations

Journal ArticleDOI
01 Apr 2022-Cells
TL;DR: It is demonstrated that the restoration of the gut microbiome usually improves stroke treatment outcomes by regulating metabolic, immune, and inflammatory responses via the gut–brain axis (GBA).
Abstract: Recent research on the gut microbiome has revealed the influence of gut microbiota (GM) on ischemic stroke pathogenesis and treatment outcomes. Alterations in the diversity, abundance, and functions of the gut microbiome, termed gut dysbiosis, results in dysregulated gut–brain signaling, which induces intestinal barrier changes, endotoxemia, systemic inflammation, and infection, affecting post-stroke outcomes. Gut–brain interactions are bidirectional, and the signals from the gut to the brain are mediated by microbially derived metabolites, such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs); bacterial components, such as lipopolysaccharide (LPS); immune cells, such as T helper cells; and bacterial translocation via hormonal, immune, and neural pathways. Ischemic stroke affects gut microbial composition via neural and hypothalamic–pituitary–adrenal (HPA) pathways, which can contribute to post-stroke outcomes. Experimental and clinical studies have demonstrated that the restoration of the gut microbiome usually improves stroke treatment outcomes by regulating metabolic, immune, and inflammatory responses via the gut–brain axis (GBA). Therefore, restoring healthy microbial ecology in the gut may be a key therapeutic target for the effective management and treatment of ischemic stroke.

34 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes the current understanding of the role of the gut microbiota in NDDs, and highlights a vicious cycle of gut dysbiosis, immune-mediated chronic neuroinflammation, impaired autophagy and proteinopathies, which contributes to the development of neurodegeneration in Alzheimer's disease, Parkinson disease, Huntington disease, multiple sclerosis, amyotrophic lateral sclerosis and frontotemporal lobar degeneration.

34 citations

Journal ArticleDOI
01 Apr 2022-Cells
TL;DR: The etiopathogenic link between gut dysbiosis and depression with preclinical and clinical evidence is summarized and information on the recent therapies and supplements, such as probiotics, prebiotics, short-chain fatty acids, and vitamin B12, omega-3 fatty acid, etc., which target the gut–brain axis (GBA) for the effective management of depressive behavior and anxiety are collated.
Abstract: Depression is a highly common mental disorder, which is often multifactorial with sex, genetic, environmental, and/or psychological causes. Recent advancements in biomedical research have demonstrated a clear correlation between gut dysbiosis (GD) or gut microbial dysbiosis and the development of anxiety or depressive behaviors. The gut microbiome communicates with the brain through the neural, immune, and metabolic pathways, either directly (via vagal nerves) or indirectly (via gut- and microbial-derived metabolites as well as gut hormones and endocrine peptides, including peptide YY, pancreatic polypeptide, neuropeptide Y, cholecystokinin, corticotropin-releasing factor, glucagon-like peptide, oxytocin, and ghrelin). Maintaining healthy gut microbiota (GM) is now being recognized as important for brain health through the use of probiotics, prebiotics, synbiotics, fecal microbial transplantation (FMT), etc. A few approaches exert antidepressant effects via restoring GM and hypothalamus–pituitary–adrenal (HPA) axis functions. In this review, we have summarized the etiopathogenic link between gut dysbiosis and depression with preclinical and clinical evidence. In addition, we have collated information on the recent therapies and supplements, such as probiotics, prebiotics, short-chain fatty acids, and vitamin B12, omega-3 fatty acids, etc., which target the gut–brain axis (GBA) for the effective management of depressive behavior and anxiety.

29 citations

Journal ArticleDOI
30 Oct 2021-Cells
TL;DR: In this article, the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of chronic liver disease (CLD) is discussed.
Abstract: Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.

11 citations