scispace - formally typeset
Search or ask a question
Author

Jacob Zhurinsky

Bio: Jacob Zhurinsky is an academic researcher from Weizmann Institute of Science. The author has contributed to research in topics: Catenin & Plakoglobin. The author has an hindex of 11, co-authored 11 publications receiving 4223 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Increased beta-catenin levels may promote neoplastic conversion by triggering cyclin D1 gene expression and, consequently, uncontrolled progression into the cell cycle through a LEF-1 binding site in the cyclinD1 promoter.
Abstract: β-Catenin plays a dual role in the cell: one in linking the cytoplasmic side of cadherin-mediated cell–cell contacts to the actin cytoskeleton and an additional role in signaling that involves transactivation in complex with transcription factors of the lymphoid enhancing factor (LEF-1) family. Elevated β-catenin levels in colorectal cancer caused by mutations in β-catenin or by the adenomatous polyposis coli molecule, which regulates β-catenin degradation, result in the binding of β-catenin to LEF-1 and increased transcriptional activation of mostly unknown target genes. Here, we show that the cyclin D1 gene is a direct target for transactivation by the β-catenin/LEF-1 pathway through a LEF-1 binding site in the cyclin D1 promoter. Inhibitors of β-catenin activation, wild-type adenomatous polyposis coli, axin, and the cytoplasmic tail of cadherin suppressed cyclin D1 promoter activity in colon cancer cells. Cyclin D1 protein levels were induced by β-catenin overexpression and reduced in cells overexpressing the cadherin cytoplasmic domain. Increased β-catenin levels may thus promote neoplastic conversion by triggering cyclin D1 gene expression and, consequently, uncontrolled progression into the cell cycle.

2,261 citations

Journal ArticleDOI
TL;DR: The molecular mechanisms underlying the role of the cadherin-catenin system in the regulation of cell proliferation, invasion, and intracellular signaling during cancer progression are discussed.
Abstract: The adhesion of cells to their neighbors determines cellular and tissue morphogenesis and regulates major cellular processes including motility, growth, differentiation, and survival. Cell-cell adherens junctions (AJs), the most common (indeed, essentially ubiquitous) type of intercellular adhesions, are important for maintaining tissue architecture and cell polarity and can limit cell movement and proliferation. AJs assemble via homophilic interactions between the extracellular domains of calcium-dependent cadherin receptors on the surface of neighboring cells. The cytoplasmic domains of cadherins bind to the submembranal plaque proteins β-catenin or plakoglobin (γ-catenin), which are linked to the actin cytoskeleton via α-catenin (Figure ​(Figure1;1; refs. 1, 2). The transmembrane assembly of cadherin receptors with the cytoskeleton is necessary for the stabilization of cell-cell adhesions and normal cell physiology. Figure 1 The dual role of β-catenin in cell adhesion and transcriptional activation. β-Catenin (β) and plakoglobin (Pg) bind to cadherin adhesion receptors, and via α-catenin (α) they associate with the actin cytoskeleton ... Malignant transformation is often characterized by major changes in the organization of the cytoskeleton, decreased adhesion, and aberrant adhesion-mediated signaling. Disruption of normal cell-cell adhesion in transformed cells may contribute to tumor cells’ enhanced migration and proliferation, leading to invasion and metastasis. This disruption can be achieved by downregulating the expression of cadherin or catenin family members or by activation of signaling pathways that prevent the assembly of AJs. The importance of the major epithelial cell cadherin, E-cadherin (E-cad, the product of the CDH1 gene), in the maintenance of normal cell architecture and behavior is underscored by the observation that hereditary predisposition to gastric cancer results from germline mutations in CDH1. Loss of E-cad expression eliminates AJ formation and is associated with the transition from adenoma to carcinoma and acquisition of metastatic capacity (3). Re-establishment of AJs in cancer cells by restoration of cadherin expression (4) exerts tumor-suppressive effects, including decreased proliferation and motility. In this Perspective, we discuss the molecular mechanisms underlying the role of the cadherin-catenin system in the regulation of cell proliferation, invasion, and intracellular signaling during cancer progression.

581 citations

Journal ArticleDOI
TL;DR: Although plakoglobin differs from beta- catenin in its functions and is unable to compensate for defects in Wnt signaling resulting from lack of beta-catenin, recent evidence suggests that plakoxide plays a unique role in WnT signaling that is different from that of Beta-Catenin.
Abstract: Beta-catenin can play different roles in the cell, including one as a structural protein at cell-cell adherens junctions and another as a transcriptional activator mediating Wnt signal transduction. Plakoglobin (gamma)-catenin), a close homolog of beta-catenin, shares with beta-catenin common protein partners and can fulfill some of the same functions. The complexing of catenins with various protein partners is regulated by phosphorylation and by intramolecular interactions. The competition between different catenin partners for binding to catenins mediates the cross-talk between cadherin-based adhesion, catenin-dependent transcription and Wnt signaling. Although plakoglobin differs from beta-catenin in its functions and is unable to compensate for defects in Wnt signaling resulting from lack of beta-catenin, recent evidence suggests that plakoglobin plays a unique role in Wnt signaling that is different from that of beta-catenin. The functional difference between catenins is reflected in their differential involvement in embryonic development and cancer progression.

334 citations

Journal ArticleDOI
TL;DR: The results indicate that plakoglobin and β-catenin differ in their nuclear translocation and complexing with LEF-1 and vinculin, and LEF–1–dependent transactivation is preferentially driven by β- catenin; and the cytoplasmic partners of β-Catenin, cadherin and α-catanin, can sequester it to the cy toplasm and inhibit its transcriptional activity.
Abstract: β-Catenin and plakoglobin are homologous proteins that function in cell adhesion by linking cadherins to the cytoskeleton and in signaling by transactivation together with lymphoid-enhancing binding/T cell (LEF/TCF) transcription factors. Here we compared the nuclear translocation and transactivation abilities of β-catenin and plakoglobin in mammalian cells. Overexpression of each of the two proteins in MDCK cells resulted in nuclear translocation and formation of nuclear aggregates. The β-catenin-containing nuclear structures also contained LEF-1 and vinculin, while plakoglobin was inefficient in recruiting these molecules, suggesting that its interaction with LEF-1 and vinculin is significantly weaker. Moreover, transfection of LEF-1 translocated endogenous β-catenin, but not plakoglobin to the nucleus. Chimeras consisting of Gal4 DNA-binding domain and the transactivation domains of either plakoglobin or β-catenin were equally potent in transactivating a Gal4-responsive reporter, whereas activation of LEF-1– responsive transcription was significantly higher with β-catenin. Overexpression of wild-type plakoglobin or mutant β-catenin lacking the transactivation domain induced accumulation of the endogenous β-catenin in the nucleus and LEF-1–responsive transactivation. It is further shown that the constitutive β-catenin–dependent transactivation in SW480 colon carcinoma cells and its nuclear localization can be inhibited by overexpressing N-cadherin or α-catenin. The results indicate that (a) plakoglobin and β-catenin differ in their nuclear translocation and complexing with LEF-1 and vinculin; (b) LEF-1–dependent transactivation is preferentially driven by β-catenin; and (c) the cytoplasmic partners of β-catenin, cadherin and α-catenin, can sequester it to the cytoplasm and inhibit its transcriptional activity.

282 citations

Journal ArticleDOI
TL;DR: It is reported here that overexpression of β‐catenin results in accumulation of p53, apparently through interference with its proteolytic degradation, and is accompanied by augmented transcriptional activity of p 53 in the affected cells.
Abstract: beta-catenin is a multifunctional protein, acting both as a structural component of the cell adhesion machinery and as a transducer of extracellular signals. Deregulated beta-catenin protein expression, due to mutations in the beta-catenin gene itself or in its upstream regulator, the adenomatous polyposis coli (APC) gene, is prevalent in colorectal cancer and in several other tumor types, and attests to the potential oncogenic activity of this protein. Increased expression of beta-catenin is an early event in colorectal carcinogenesis, and is usually followed by a later mutational inactivation of the p53 tumor suppressor. To examine whether these two key steps in carcinogenesis are interrelated, we studied the effect of excess beta-catenin on p53. We report here that overexpression of beta-catenin results in accumulation of p53, apparently through interference with its proteolytic degradation. This effect involves both Mdm2-dependent and -independent p53 degradation pathways, and is accompanied by augmented transcriptional activity of p53 in the affected cells. Increased p53 activity may provide a safeguard against oncogenic deregulation of beta-catenin, and thus impose a pressure for mutational inactivation of p53 during the later stages of tumor progression.

234 citations


Cited by
More filters
Journal ArticleDOI
25 Aug 2006-Cell
TL;DR: Induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions is demonstrated and iPS cells, designated iPS, exhibit the morphology and growth properties of ES cells and express ES cell marker genes.

23,959 citations

Journal ArticleDOI
TL;DR: The data reveal that multiple extracellular, cytoplasmic, and nuclear regulators intricately modulate Wnt signaling levels, and that receptor-ligand specificity and feedback loops help to determine WNT signaling outputs.
Abstract: Tight control of cell-cell communication is essential for the generation of a normally patterned embryo. A critical mediator of key cell-cell signaling events during embryogenesis is the highly conserved Wnt family of secreted proteins. Recent biochemical and genetic analyses have greatly enriched our understanding of how Wnts signal, and the list of canonical Wnt signaling components has exploded. The data reveal that multiple extracellular, cytoplasmic, and nuclear regulators intricately modulate Wnt signaling levels. In addition, receptor-ligand specificity and feedback loops help to determine Wnt signaling outputs. Wnts are required for adult tissue maintenance, and perturbations in Wnt signaling promote both human degenerative diseases and cancer. The next few years are likely to see novel therapeutic reagents aimed at controlling Wnt signaling in order to alleviate these conditions.

5,129 citations

Journal ArticleDOI
Paul Polakis1
TL;DR: In this review, the wnt pathway will be covered from the perspective of cancer, with emphasis placed on molecular defects known to promote neoplastic transformation in humans and in animal models.
Abstract: The regulation of cell growth and survival can be subverted by a variety of genetic defects that alter transcriptional programs normally responsible for controlling cell number. High throughput analysis of these gene expression patterns should ultimately lead to the identification of minimal expression profiles that will serve as common denominators in assigning a cancer to a given category. In the course of defining the common denominators, though, we should not be too surprised to find that cancers within a single category may nevertheless exhibit seemingly disparate genetic defects. The wnt pathway has already provided an outstanding example of this. We now know of three regulatory genes in this pathway that are mutated in primary human cancers and several others that promote experimental cancers in rodents (Fig. 1). In all of these cases the common denominator is the activation of gene transcription by -catenin. The resulting gene expression profile should provide us with a signature common to those cancers carrying defects in the wnt pathway. In this review, the wnt pathway will be covered from the perspective of cancer, with emphasis placed on molecular defects known to promote neoplastic transformation in humans and in animal models.

3,277 citations

Journal ArticleDOI
TL;DR: Increased beta-catenin levels may promote neoplastic conversion by triggering cyclin D1 gene expression and, consequently, uncontrolled progression into the cell cycle through a LEF-1 binding site in the cyclinD1 promoter.
Abstract: β-Catenin plays a dual role in the cell: one in linking the cytoplasmic side of cadherin-mediated cell–cell contacts to the actin cytoskeleton and an additional role in signaling that involves transactivation in complex with transcription factors of the lymphoid enhancing factor (LEF-1) family. Elevated β-catenin levels in colorectal cancer caused by mutations in β-catenin or by the adenomatous polyposis coli molecule, which regulates β-catenin degradation, result in the binding of β-catenin to LEF-1 and increased transcriptional activation of mostly unknown target genes. Here, we show that the cyclin D1 gene is a direct target for transactivation by the β-catenin/LEF-1 pathway through a LEF-1 binding site in the cyclin D1 promoter. Inhibitors of β-catenin activation, wild-type adenomatous polyposis coli, axin, and the cytoplasmic tail of cadherin suppressed cyclin D1 promoter activity in colon cancer cells. Cyclin D1 protein levels were induced by β-catenin overexpression and reduced in cells overexpressing the cadherin cytoplasmic domain. Increased β-catenin levels may thus promote neoplastic conversion by triggering cyclin D1 gene expression and, consequently, uncontrolled progression into the cell cycle.

2,261 citations

Journal ArticleDOI
18 Oct 2002-Cell
TL;DR: The β-catenin/TCF-4 complex constitutes the master switch that controls proliferation versus differentiation in healthy and malignant intestinal epithelial cells.

1,972 citations