scispace - formally typeset
Search or ask a question
Author

Jacobus J. de Vries

Bio: Jacobus J. de Vries is an academic researcher from VU University Amsterdam. The author has contributed to research in topics: Groundwater discharge & Groundwater recharge. The author has an hindex of 2, co-authored 2 publications receiving 737 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors summarized current understanding of recharge processes, identified recurring rechargeevaluation problems, and reported on some recent advances in estimation techniques for (semi-)arid regions.
Abstract: Since the mid-1980s, a relative explosion of groundwater-recharge studies has been reported in the literature. It is therefore relevant to assess what is now known and to offer further guidance to practitioners involved in water-resource development. The paper summarizes current understanding of recharge processes, identifies recurring recharge-evaluation problems, and reports on some recent advances in estimation techniques. Emphasis is accorded to (semi-)arid regions because the need for information is greatest in those areas – groundwater is often the only water source, is vulnerable to contamination, and is prone to depletion. Few studies deal explicitly with groundwater recharge in temperate and humid zones, because recharge is normally included in regional groundwater investigations as one component of the water balance. The resolution of regional water-balance studies in (semi-)arid areas is, in contrast, often too low to quantify the limited recharge component with sufficient precision.

783 citations

Journal ArticleDOI
TL;DR: In this article, an analytical solution for the behavior of groundwater discharge in terms of a time-variable drainage resistance was derived based on schematic representations of hydrogeological conditions, related to the structure of the formations and topographical features.

30 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide an overview and synthesis of the key aspects of subsurface hydrology, including water quantity and quality, related to global change and potential impacts of groundwater on the global climate system.

809 citations

Journal ArticleDOI
TL;DR: A review of the current state of scientific knowledge of definitions, processes, and quantification of hydrological drought is given in this paper, where the influence of climate and terrestrial properties (geology, land use) on hydrologic drought characteristics and the role of storage is discussed.
Abstract: Drought is a complex natural hazard that impacts ecosystems and society in many ways. Many of these impacts are associated with hydrological drought (drought in rivers, lakes, and groundwater). It is, therefore, crucial to understand the development and recovery of hydrological drought. In this review an overview is given of the current state of scientific knowledge of definitions, processes, and quantification of hydrological drought. Special attention is given to the influence of climate and terrestrial properties (geology, land use) on hydrological drought characteristics and the role of storage. Furthermore, the current debate about the use and usefulness of different drought indicators is highlighted and recent advances in drought monitoring and prediction are mentioned. Research on projections of hydrological drought for the future is summarized. This review also briefly touches upon the link of hydrological drought characteristics with impacts and the issues related to drought management. Finally, four challenges for future research on hydrological drought are defined that relate international initiatives such as the Intergovernmental Panel on Climate Change (IPCC) and the ‘Panta Rhei’ decade of the International Association of Hydrological Sciences (IAHS). WIREs Water 2015, 2:359–392. doi: 10.1002/wat2.1085 For further resources related to this article, please visit the WIREs website.

805 citations

Journal ArticleDOI
TL;DR: In this paper, a first-order nonlinear dynamical system can be inferred directly from measurements of streamflow fluctuations, leading to quantitative estimates of catchment dynamic storage, recession time scales and sensitivity to antecedent moisture, suggesting that it is useful for catchment characterization.
Abstract: [1] Water fluxes in catchments are controlled by physical processes and material properties that are complex, heterogeneous, and poorly characterized by direct measurement. As a result, parsimonious theories of catchment hydrology remain elusive. Here I describe how one class of catchments (those in which discharge is determined by the volume of water in storage) can be characterized as simple first-order nonlinear dynamical systems, and I show that the form of their governing equations can be inferred directly from measurements of streamflow fluctuations. I illustrate this approach using data from the headwaters of the Severn and Wye rivers at Plynlimon in mid-Wales. This approach leads to quantitative estimates of catchment dynamic storage, recession time scales, and sensitivity to antecedent moisture, suggesting that it is useful for catchment characterization. It also yields a first-order nonlinear differential equation that can be used to directly simulate the streamflow hydrograph from precipitation and evapotranspiration time series. This single-equation rainfall-runoff model predicts streamflow at Plynlimon as accurately as other models that are much more highly parameterized. It can also be analytically inverted; thus, it can be used to “do hydrology backward,” that is, to infer time series of whole-catchment precipitation directly from fluctuations in streamflow. At Plynlimon, precipitation rates inferred from streamflow fluctuations agree with rain gauge measurements as closely as two rain gauges in each catchment agree with each other. These inferred precipitation rates are not calibrated to precipitation measurements in any way, making them a strong test of the underlying theory. The same approach can be used to estimate whole-catchment evapotranspiration rates during rainless periods. At Plynlimon, evapotranspiration rates inferred from streamflow fluctuations exhibit seasonal and diurnal cycles that agree semiquantitatively with Penman-Monteith estimates. Thus, streamflow hydrographs may be useful for reconstructing precipitation and evapotranspiration records where direct measurements are unavailable, unreliable, or unrepresentative at the scale of the landscape.

686 citations

Journal ArticleDOI
TL;DR: In this paper, renewable groundwater stress is quantified in the world's largest aquifersCharacteristic stress regimes are defined to determine the severity of stress overstressed aquifer are mainly in rangeland biomes with some croplands.
Abstract: Renewable groundwater stress is quantified in the world's largest aquifersCharacteristic stress regimes are defined to determine the severity of stressOverstressed aquifers are mainly in rangeland biomes with some croplands.

548 citations

Journal ArticleDOI
TL;DR: The sources of and pathways for groundwater recharge in urban areas are more numerous and complex than in rural environments as discussed by the authors, where buildings, roads, and other surface infrastructure combine with man-made drainage networks to change the pathways for precipitation.
Abstract: The sources of and pathways for groundwater recharge in urban areas are more numerous and complex than in rural environments. Buildings, roads, and other surface infrastructure combine with man-made drainage networks to change the pathways for precipitation. Some direct recharge is lost, but additional recharge can occur from storm drainage systems. Large amounts of water are imported into most cities for supply, distributed through underground pipes, and collected again in sewers or septic tanks. The leaks from these pipe networks often provide substantial recharge. Sources of recharge in urban areas are identified through piezometry, chemical signatures, and water balances. All three approaches have problems. Recharge is quantified either by individual components (direct recharge, water-mains leakage, septic tanks, etc.) or holistically. Working with individual components requires large amounts of data, much of which is uncertain and is likely to lead to large uncertainties in the final result. Recommended holistic approaches include the use of groundwater modelling and solute balances, where various types of data are integrated. Urban recharge remains an under-researched topic, with few high-quality case studies reported in the literature.

426 citations