scispace - formally typeset
Search or ask a question
Author

Jacopo Buongiorno

Bio: Jacopo Buongiorno is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Boiling & Nanofluid. The author has an hindex of 40, co-authored 170 publications receiving 12125 citations. Previous affiliations of Jacopo Buongiorno include Electric Power Research Institute & Tokyo Electric Power Company.


Papers
More filters
ReportDOI
01 Jan 2002
TL;DR: In this paper, a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core was developed, which can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.
Abstract: The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

16 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of asymmetric heating on the Nusselt number was analyzed using a boundary layer analysis with a two-region wall layer model, similar to that originally proposed by Prandtl.
Abstract: Experimental results are presented for single-phase heat transfer in a narrow rectangular minichannel heated on one side. The aspect ratio and gap thickness of the test channel were 29:1 and 1.96 mm, respectively. Friction pressure drop and Nusselt numbers are reported for the transition and fully turbulent flow regimes, with Prandtl numbers ranging from 2.2 to 5.4. Turbulent friction pressure drop for the high aspect ratio channel is well-correlated by the Blasius solution when a modified Reynolds number, based upon a laminar equivalent diameter, is utilized. The critical Reynolds number for the channel falls between 3500 and 4000, with Nusselt numbers in the transition regime being reasonably predicted by Gnielinski's correlation. The dependence of the heat transfer coefficient on the Prandtl number is larger than that predicted by circular tube correlations, and is likely a result of the asymmetric heating. The problem of asymmetric heating condition is approached theoretically using a boundary layer analysis with a two-region wall layer model, similar to that originally proposed by Prandtl. The analysis clarifies the influence of asymmetric heating on the Nusselt number and correctly predicts the experimentally observed trend with Prandtl number. Furthermore, a semi-analytic correlation is derived from the analysis that accountsmore » for the effect of aspect ratio and asymmetric heating, and is shown to predict the experimental results of this study with a mean absolute error (MAE) of less than 5% for 4000 < Re < 70,000.« less

15 citations

01 Dec 2009
TL;DR: In this article, the authors summarize the MIT research in this area with particular emphasis to boiling behavior, including, prominently, the Critical Heat Flux limit and quenching phenomena, with the goal of evaluating their benefits for and applicability to nuclear power systems (i.e., primary coolant, safety systems, severe accident mitigation strategies).
Abstract: Colloidal dispersions of nanoparticles are known as ‘nanofluids’. Such engineered fluids offer the potential for enhancing heat transfer, particularly boiling heat transfer, while avoiding the drawbacks (i.e., erosion, settling, clogging) that hindered the use of particle-laden fluids in the past. At MIT we have been studying the heat transfer characteristics of nanofluids for the past five years, with the goal of evaluating their benefits for and applicability to nuclear power systems (i.e., primary coolant, safety systems, severe accident mitigation strategies). This paper will summarize the MIT research in this area with particular emphasis to boiling behavior, including, prominently, the Critical Heat Flux limit and quenching phenomena.

14 citations

Journal ArticleDOI
TL;DR: In this article, the authors present experimental data and compare various correlations for predicting the pool boiling heat transfer coefficient of a new low-GWP fluid, FK-649, using a pressurized boiling facility with a smooth aluminum heater.
Abstract: Due to growing concerns over anthropogenic effects on the climate, there is increasing need to replace engineered fluids of high global warming potentials (GWPs), such as hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), with more environmentally friendly alternatives in thermal management systems. This article presents experimental data and compares various correlations for predicting the pool boiling heat transfer coefficient of a new low-GWP fluid, FK-649. Using a pressurized boiling facility with a smooth aluminum heater, the critical heat flux (CHF) and heat transfer coefficient were measured for the pool boiling of FK-649 at various saturation conditions. The commonly used refrigerant tetrafluoroethane (R-134a) is tested in the same pressurized facility to act as a benchmark for the new fluid. While R-134a exhibited a higher heat transfer coefficient and CHF, this behavior is expected from the fluid properties. Two-phase heat transfer performance of FK-649 is expected to be similar to that of t...

14 citations

Dissertation
01 Jul 2007
TL;DR: Thesis (S.M.) as discussed by the authors, Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, February 7, 2007, Boston, Massachusetts, USA, United States.
Abstract: Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, February 2007.

14 citations


Cited by
More filters
01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations

Book ChapterDOI
01 Jan 1982
TL;DR: In this article, the authors discuss leading problems linked to energy that the world is now confronting and propose some ideas concerning possible solutions, and conclude that it is necessary to pursue actively the development of coal, natural gas, and nuclear power.
Abstract: This chapter discusses leading problems linked to energy that the world is now confronting and to propose some ideas concerning possible solutions. Oil deserves special attention among all energy sources. Since the beginning of 1981, it has merely been continuing and enhancing the downward movement in consumption and prices caused by excessive rises, especially for light crudes such as those from Africa, and the slowing down of worldwide economic growth. Densely-populated oil-producing countries need to produce to live, to pay for their food and their equipment. If the economic growth of the industrialized countries were to be 4%, even if investment in the rational use of energy were pushed to the limit and the development of nonpetroleum energy sources were also pursued actively, it would be extremely difficult to prevent a sharp rise in prices. It is evident that it is absolutely necessary to pursue actively the development of coal, natural gas, and nuclear power if a physical shortage of energy is not to block economic growth.

2,283 citations

01 Jan 2007

1,932 citations

Journal ArticleDOI
TL;DR: In this article, a similarity solution is presented which depends on the Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt.

1,565 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the recent progress on the study of nanofluids, such as the preparation methods, the evaluation methods for the stability of nanometrics, and the ways to enhance the stability for nanofl fluids, and presented the broad range of current and future applications in various fields including energy and mechanical and biomedical fields.
Abstract: Nanofluids, the fluid suspensions of nanomaterials, have shown many interesting properties, and the distinctive features offer unprecedented potential for many applications. This paper summarizes the recent progress on the study of nanofluids, such as the preparation methods, the evaluation methods for the stability of nanofluids, and the ways to enhance the stability for nanofluids, the stability mechanisms of nanofluids, and presents the broad range of current and future applications in various fields including energy and mechanical and biomedical fields. At last, the paper identifies the opportunities for future research.

1,320 citations