scispace - formally typeset
Search or ask a question
Author

Jacopo Buongiorno

Bio: Jacopo Buongiorno is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Boiling & Nanofluid. The author has an hindex of 40, co-authored 170 publications receiving 12125 citations. Previous affiliations of Jacopo Buongiorno include Electric Power Research Institute & Tokyo Electric Power Company.


Papers
More filters
01 Jul 2002
TL;DR: In this paper, an oxygen control strategy based on injection of minute amounts of hydrogen in the feedwater can ensure formation of a stable iron oxide film, while preventing precipitation of the liquid-metal oxides.
Abstract: The selection of structural materials suitable for fuel cladding and primary system purposes is key to the development of all lead and lead-bismuth cooled nuclear systems. Traditional austenitic stainless steels cannot be used at the temperatures of interest (>450 deg. C), because of the large solubility of nickel in bismuth. The possibility of employing low nickel martensitic/ferritic stainless steels is currently being studied. Corrosion control for these alloys is based on the formation of a stable iron oxide film on the surfaces exposed to the liquid-metal coolant. This requires maintenance of at least a minimum concentration of oxygen in the liquid metal. On the other hand, excessive oxygen can cause precipitation of lead- and bismuth-oxide slag. Excessive oxidation of the coolant is particularly challenging in the case of a direct-contact system where lead-bismuth and water are mixed to generate steam. In this paper it is demonstrated that an oxygen control strategy based on injection of minute amounts of hydrogen in the feedwater can ensure formation of the stable iron film, while preventing precipitation of the liquid-metal oxides. This corrosion-control approach is quantified in the context of a conceptual lead-bismuth-cooled fast reactor of recent development, which makes use of in-vessel direct-contactmore » generation of the working steam. (authors)« less

7 citations

ReportDOI
01 Oct 2002
TL;DR: The work of the Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning as mentioned in this paper.
Abstract: The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

7 citations

01 Mar 2015
TL;DR: In this article, the effect of roughness elements on the wall-layer structure and the friction factor was investigated using direct numerical simulations (DNS) and large eddy simulations (LES).
Abstract: Abstract Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) were performed for fully-developed turbulent flow in channels with smooth walls and walls featuring hemispherical roughness elements at shear Reynolds numbers Reτ = 180 and 400, with the goal of studying the effect of these roughness elements on the wall-layer structure and on the friction factor. The LES and DNS approaches were verified first by comparison with existing DNS databases for smooth walls. Then, a parametric study for the hemispherical roughness elements was conducted, including the effects of shear Reynolds number, normalized roughness height (k+ = 10–20) and relative roughness spacing (s+/k+ = 2–6). The sensitivity study also included the effect of distribution pattern (regular square lattice vs. random pattern) of the roughness elements on the walls. The hemispherical roughness elements generate turbulence, thus increasing the friction factor with respect to the smooth-wall case, and causing a downward shift in the mean velocity profiles. The simulations revealed that the friction factor decreases with increasing Reynolds number and roughness spacing, and increases strongly with increasing roughness height. The effect of random element distribution on friction factor and mean velocities is however weak. In all cases, there is a clear cut between the inner layer near the wall, which is affected by the presence of the roughness elements, and the outer layer, which remains relatively unaffected. The study reveals that the presence of roughness elements of this shape promotes locally the instantaneous flow motion in the lateral direction in the wall layer, causing a transfer of energy from the streamwise Reynolds stress to the lateral component. The study indicates also that the coherent structures developing in the wall layer are rather similar to the smooth case but are lifted up by almost a constant wall-unit shift y+ (∼10–15), which, interestingly, corresponds to the relative roughness k+ = 10.

7 citations

Proceedings ArticleDOI
01 Jan 2008
TL;DR: In this article, an experimental study was performed to verify whether or not a nanofluid can indeed enhance the critical heat flux (CHF) in the flow boiling condition.
Abstract: Nanofluids are known as dispersions of nano-scale particles in solvents. Recent reviews of pool boiling experiments using nanofluids have shown that they have greatly enhanced critical heat flux (CHF). In many practical heat transfer applications, however, it is flow boiling that is of particular importance. Therefore, an experimental study was performed to verify whether or not a nanofluid can indeed enhance the CHF in the flow boiling condition. The nanofluid used in this work was a dispersion of aluminum oxide particles in water at very low concentration (≤0.1 v%). CHF was measured in a flow loop with a stainless steel grade 316 tubular test section of 5.54 mm inner diameter and 100 mm long. The test section was designed to provide a maximum heat flux of about 9.0 MW/m2 , delivered by two direct current power supplies connected in parallel. More than 40 tests were conducted at three different mass fluxes of 1,500, 2,000, and 2,500 kg/m2 sec while the fluid outlet temperature was limited not to exceed the saturation temperature at 0.1 MPa. The experimental results show that the CHF could be enhanced by as much as 45%. Additionally, surface inspection using Scanning Electron Microscopy reveals that the surface morphology of the test heater has been altered during the nanofluid boiling, which, in turn, provides valuable clues for explaining the CHF enhancement.Copyright © 2008 by ASME

7 citations

01 Oct 2015
TL;DR: In this article, the authors present a contract for the Global Threat Reduction Initiative (GTI) with the U.S. National Nuclear Security Administration (NNSSA), which includes the following requirements:
Abstract: United States. National Nuclear Security Administration. Global Threat Reduction Initiative (Argonne National Laboratory. Contract 25-30101-0004 A)

7 citations


Cited by
More filters
01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations

Book ChapterDOI
01 Jan 1982
TL;DR: In this article, the authors discuss leading problems linked to energy that the world is now confronting and propose some ideas concerning possible solutions, and conclude that it is necessary to pursue actively the development of coal, natural gas, and nuclear power.
Abstract: This chapter discusses leading problems linked to energy that the world is now confronting and to propose some ideas concerning possible solutions. Oil deserves special attention among all energy sources. Since the beginning of 1981, it has merely been continuing and enhancing the downward movement in consumption and prices caused by excessive rises, especially for light crudes such as those from Africa, and the slowing down of worldwide economic growth. Densely-populated oil-producing countries need to produce to live, to pay for their food and their equipment. If the economic growth of the industrialized countries were to be 4%, even if investment in the rational use of energy were pushed to the limit and the development of nonpetroleum energy sources were also pursued actively, it would be extremely difficult to prevent a sharp rise in prices. It is evident that it is absolutely necessary to pursue actively the development of coal, natural gas, and nuclear power if a physical shortage of energy is not to block economic growth.

2,283 citations

01 Jan 2007

1,932 citations

Journal ArticleDOI
TL;DR: In this article, a similarity solution is presented which depends on the Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt.

1,565 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the recent progress on the study of nanofluids, such as the preparation methods, the evaluation methods for the stability of nanometrics, and the ways to enhance the stability for nanofl fluids, and presented the broad range of current and future applications in various fields including energy and mechanical and biomedical fields.
Abstract: Nanofluids, the fluid suspensions of nanomaterials, have shown many interesting properties, and the distinctive features offer unprecedented potential for many applications. This paper summarizes the recent progress on the study of nanofluids, such as the preparation methods, the evaluation methods for the stability of nanofluids, and the ways to enhance the stability for nanofluids, the stability mechanisms of nanofluids, and presents the broad range of current and future applications in various fields including energy and mechanical and biomedical fields. At last, the paper identifies the opportunities for future research.

1,320 citations