scispace - formally typeset
Search or ask a question
Author

Jacopo De Nardis

Bio: Jacopo De Nardis is an academic researcher from Ghent University. The author has contributed to research in topics: Physics & Quasiparticle. The author has an hindex of 25, co-authored 56 publications receiving 2743 citations. Previous affiliations of Jacopo De Nardis include École Normale Supérieure & University of Amsterdam.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: A kinetic theory of elementary excitations is proposed and an exact expression for the expectation values of the charge currents in a generic stationary state is unveiled for the nonequilibrium time evolution of piecewise homogeneous states in the XXZ spin-1/2 chain.
Abstract: We consider the nonequilibrium time evolution of piecewise homogeneous states in the XXZ spin-1/2 chain, a paradigmatic example of an interacting integrable model. The initial state can be thought of as the result of joining chains with different global properties. Through dephasing, at late times, the state becomes locally equivalent to a stationary state which explicitly depends on position and time. We propose a kinetic theory of elementary excitations and derive a continuity equation which fully characterizes the thermodynamics of the model. We restrict ourselves to the gapless phase and consider cases where the chains are prepared: (1) at different temperatures, (2) in the ground state of two different models, and (3) in the "domain wall" state. We find excellent agreement (any discrepancy is within the numerical error) between theoretical predictions and numerical simulations of time evolution based on time-evolving block decimation algorithms. As a corollary, we unveil an exact expression for the expectation values of the charge currents in a generic stationary state.

639 citations

Journal ArticleDOI
TL;DR: In this article, the ground state of a free many-particle bosonic theory in one dimension is let unitarily evolve in time under the integrable Lieb-Liniger Hamiltonian of interacting repulsive bosons.
Abstract: We study a quench protocol where the ground state of a free many-particle bosonic theory in one dimension is let unitarily evolve in time under the integrable Lieb-Liniger Hamiltonian of $\ensuremath{\delta}$-interacting repulsive bosons. By using a recently proposed variational method, we here obtain the exact nonthermal steady state of the system in the thermodynamic limit and discuss some of its main physical properties. Besides being a rare case of a thermodynamically exact solution to a truly interacting quench situation, this interestingly represents an example where a standard implementation of the generalized Gibbs ensemble fails.

263 citations

Journal ArticleDOI
TL;DR: It is shown that hydrodynamic diffusion is generically present in many-body, one-dimensional interacting quantum and classical integrable models, and extended to terms of Navier-Stokes type, which leads to positive entropy production and diffusive relaxation mechanisms.
Abstract: We show that hydrodynamic diffusion is generically present in many-body, one-dimensional interacting quantum and classical integrable models. We extend the recently developed generalized hydrodynamic (GHD) to include terms of Navier-Stokes type, which leads to positive entropy production and diffusive relaxation mechanisms. These terms provide the subleading diffusive corrections to Euler-scale GHD for the large-scale nonequilibrium dynamics of integrable systems, and arise due to two-body scatterings among quasiparticles. We give exact expressions for the diffusion coefficients. Our results apply to a large class of integrable models, including quantum and classical, Galilean and relativistic field theories, chains, and gases in one dimension, such as the Lieb-Liniger model describing cold atom gases and the Heisenberg quantum spin chain. We provide numerical evaluations in the Heisenberg $XXZ$ spin chain, both for the spin diffusion constant, and for the diffusive effects during the melting of a small domain wall of spins, finding excellent agreement with time-dependent density matrix renormalization group numerical simulations.

214 citations

Journal ArticleDOI
TL;DR: This Letter rigorously resolve the long-standing controversy regarding the nature of spin and charge Drude weights in the absence of chemical potentials, and devise an efficient computational method to calculate exact Drudes weights from the stationary currents generated in an inhomogeneous quench from bipartitioned initial states.
Abstract: Nonergodic dynamical systems display anomalous transport properties. Prominent examples are integrable quantum systems, whose exceptional properties are diverging dc conductivities. In this Letter, we explain the microscopic origin of ideal conductivity by resorting to the thermodynamic particle content of a system. Using group-theoretic arguments we rigorously resolve the long-standing controversy regarding the nature of spin and charge Drude weights in the absence of chemical potentials. In addition, by employing a hydrodynamic description, we devise an efficient computational method to calculate exact Drude weights from the stationary currents generated in an inhomogeneous quench from bipartitioned initial states. We exemplify the method on the anisotropic Heisenberg model at finite temperatures for the entire range of anisotropies, accessing regimes that are out of reach with other approaches. Quite remarkably, spin Drude weight and asymptotic spin current rates reveal a completely discontinuous (fractal) dependence on the anisotropy parameter.

164 citations

Journal ArticleDOI
25 Apr 2019
TL;DR: In this paper, the authors extend the hydrodynamic theory for quantum and classical integrable models to account for diffusive dynamics and local entropy production, and show that the diffusion is due to scattering processes among quasiparticles, which are only present in truly interacting systems.
Abstract: We extend beyond the Euler scales the hydrodynamic theory for quantum and classical integrable models developed in recent years, accounting for diffusive dynamics and local entropy production. We review how the diffusive scale can be reached via a gradient expansion of the expectation values of the conserved fields and how the coefficients of the expansion can be computed via integrated steady-state two-point correlation functions, emphasising that PT-symmetry can fully fix the inherent ambiguity in the definition of conserved fields at the diffusive scale. We develop a form factor expansion to compute such correlation functions and we show that, while the dynamics at the Euler scale is completely determined by the density of single quasiparticle excitations on top of the local steady state, diffusion is due to scattering processes among quasiparticles, which are only present in truly interacting systems. We then show that only two-quasiparticle scattering processes contribute to the diffusive dynamics. Finally we employ the theory to compute the exact spin diffusion constant of a gapped XXZ spin-1/2 chain at finite temperature and half-filling, where we show that spin transport is purely diffusive.

154 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Book
01 Jan 2010

1,870 citations