scispace - formally typeset
Search or ask a question
Author

Jacques Castanet

Bio: Jacques Castanet is an academic researcher from University of Paris. The author has contributed to research in topics: Bone growth & Population. The author has an hindex of 35, co-authored 59 publications receiving 3445 citations. Previous affiliations of Jacques Castanet include Centre national de la recherche scientifique & Pierre-and-Marie-Curie University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the first statistical analysis of Amprino's rule is presented, measured on comprehensive growth series of the mallard, Anas platyrhynchos.

213 citations

Journal ArticleDOI
TL;DR: The highest bone tissue growth rate known to date is found, which supports the heuristic value of a relationship between growth rate and bone primary microstructure, but it is found that growth rates of bone tissue types vary according to the long bone considered (P<10–5).
Abstract: SUMMARY Microstructure–function relationships remain poorly understood in primary bone tissues. The relationship between bone growth rate and bone tissue type, although documented in some species by previous works, remains somewhat unclear and controversial. We assessed this relationship in a species with extreme adaptations, the king penguin ( Aptenodytes patagonicus ). These birds have a peculiar growth, interrupted 3 months after hatching by the austral winter. Before this interruption, chicks undergo extremely rapid statural and ponderal growth. We recorded experimentally (by means of fluorescent labelling) the growth rate of bone tissue in four long bones (humerus, radius, femur and tibiotarsus) of four king penguin chicks during their fastest phase of growth (3–5 weeks after hatching) and identified the associated bone tissue types (`laminar9, `longitudinal9, `reticular9 or `radial9 fibro-lamellar bone tissue). We found the highest bone tissue growth rate known to date, up to 171 μm day –1 (mean 55 μm day –1 ). There was a highly significant relationship between bone tissue type and growth rate ( P –6 ). Highest rates were obtained with the radial microarchitecture of fibro-lamellar bone, where cavities in the woven network are aligned radially. This result supports the heuristic value of a relationship between growth rate and bone primary microstructure. However, we also found that growth rates of bone tissue types vary according to the long bone considered ( P –5 ) (e.g. growth rates were 38% lower in the radius than in the other long bones), a result that puts some restriction on the applicability of absolute growth rate values (e.g. to fossil species). The biomechanical disadvantages of accelerated bone growth are discussed in relation to the locomotor behaviour of the chicks during their first month of life.

205 citations

Journal ArticleDOI
TL;DR: The first quantitative experimental data on growth dynamics of the primary cortical bone of young ratites demonstrate that from hatching to 2 months of age, cortical thickness remains constant, thereby expressing equilibrium between periosteal bone deposition and an endostealBone resorption.
Abstract: The first quantitative experimental data on growth dynamics of the primary cortical bone of young ratites demonstrate the following. 1) From hatching to 2 months of age, cortical thickness remains constant, thereby expressing equilibrium between periosteal bone deposition and an endosteal bone resorption. 2) Radial growth rates of the diaphyseal bone cortex are high (10–40 μm·day –1 on average – maximum 80 μm·day –1 ) in the hindlimb (femur, tibiotarsus and tarsometatarsus). Wing bones are smaller and later developed. They have lower rates of radial osteogenesis (2–14 μm·day –1 ). 3) High growth rates are linked to densely vascularized primary bone belonging to the reticular or laminar tissue types. Growth rates fall when bone vascular density decreases. These results emphasize the importance of examining a large number of skeletal elements in order to build a precise knowledge of the general relationship between bone growth rate and bone tissue type. They also stress the potential of bone growth rate quantification among extinct tetrapods, including non-avian dinosaurs.

169 citations

Journal ArticleDOI
TL;DR: An investigation on the quantification of the phylogenetic signal in the following bone histological, microanatomical, and morphological traits in a sample of femora of 35 species of sauropsids: vascular density, vascular orientation, index of Haversian remodeling, cortical thickness, and cross-sectional area.
Abstract: In spite of the fact that the potential usefulness of bone histology in systematics has been discussed for over one and a half centuries, the presence of a phylogenetic signal in the variation of histological characters has rarely been assessed. A quantitative assessment of phylogenetic signal in bone histological characters could provide a justification for performing optimizations of these traits onto independently generated phylogenetic trees (as has been done in recent years). Here we present an investigation on the quantification of the phylogenetic signal in the following bone histological, microanatomical, and morphological traits in a sample of femora of 35 species of sauropsids: vascular density, vascular orientation, index of Haversian remodeling, cortical thickness, and cross-sectional area (bone size). For this purpose, we use two methods, regressions on distance matrices tested for significance using permutations (a Mantel test) and random tree length distribution. Within sauropsids, these bone microstructural traits have an optimal systematic value in archosaurs. In this taxon, a Mantel test shows that the phylogeny explains 81.8% of the variation of bone size and 86.2% of the variation of cortical thickness. In contrast, a Mantel test suggests that the phylogenetic signal in histological traits is weak: although the phylogeny explains 18.7% of the variation of vascular density in archosaurs, the phylogenetic signal is not significant either for vascular orientation or for the index of Haversian remodeling. However, Mantel tests seem to underestimate the proportion of variance of the dependent character explained by the phylogeny, as suggested by a PVR (phylogenetic eigenvector) analysis. We also deal with some complementary questions. First, we evaluate the functional dependence of bone vascular density on bone size by using phylogenetically independent contrasts. Second, we perform a variation partitioning analysis and show that the phylogenetic signal in bone vascular density is not a by-product of phylogentic signal in bone size. Finally, we analyze the evolution of cortical thickness in diapsids by using an optimization by squared change parsimony and discuss the functional significance of this character in terms of decreased buoyancy in crocodiles and mass saving in birds. These results are placed in the framework of the constructional morphology model, according to which the variation of a character in a clade has a historical (phylogenetic) component, a functional (adaptive) component, and a structural (architectural) component.

127 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: The difference between allometric slopes for marsupials and eutherians is no longer significant and the slope difference between Scleroglossan and Iguanian lizards disappears as well, but other taxonomic differences remain significant.
Abstract: We summarize the recent information on field metabolic rates (FMR) of wild terrestrial vertebrates as determined by the doubly labeled water technique. Allometric (scaling) relationships are calculated for mammals (79 species), reptiles (55 species), and birds (95 species) and for various taxonomic, dietary, and habitat groups within these categories. Exponential equations based on body mass are offered for predicting rates of daily energy expenditure and daily food requirements of free-ranging mammals, reptiles, and birds. Significant scaling differences between various taxa, dietary, and habitat groups (detected by analysis of covariance with P < or = 0.05) include the following: (a) The allometric slope for reptiles (0.889) is greater than that for mammals (0.734), which is greater than that for birds (0.681); (b) the slope for eutherian mammals (0.772) is greater than that for marsupial mammals (0.590); (c) among families of birds, slopes do not differ but elevations (intercepts) do, with passerine and procellariid birds having relatively high FMRs and gallinaceous birds having low FMRs; (d) Scleroglossan lizards have a higher slope (0.949) than do Iguanian lizards (0.793); (e) desert mammals have a higher slope (0.785) than do nondesert mammals; (f) marine birds have relatively high FMRs and desert birds have low FMRs; and (g) carnivorous mammals have a relatively high slope and carnivorous, insectivorous, and nectarivorous birds have relatively higher FMRs than do omnivores and granivores. The difference detected between passerine and nonpasserine birds reported in earlier reviews is not evident in the larger data set analyzed here. When the results are adjusted for phylogenetic effects using independent contrasts analysis, the difference between allometric slopes for marsupials and eutherians is no longer significant and the slope difference between Scleroglossan and Iguanian lizards disappears as well, but other taxonomic differences remain significant. Possible causes of the unexplained variations in FMR that could improve our currently inaccurate FMR prediction capabilities should be evaluated, including many important groups of terrestrial vertebrates that remain under- or unstudied and such factors as reproductive, thermoregulatory, social, and predator-avoidance behavior.

746 citations

Journal ArticleDOI
TL;DR: A new hierarchical scheme for several bone tissue types that incorporates these two materials, the major material being the well-known ordered arrays of mineralized collagen fibrils and associated macromolecules, and the minor component being a relatively disordered material.

488 citations

Journal ArticleDOI
TL;DR: A generalization of the K statistic of Blomberg et al. that is useful for quantifying and evaluating phylogenetic signal in highly dimensional multivariate data is described and the utility of the new approach is illustrated by evaluating the strength of phylogenetics signal for head shape in a lineage of Plethodon salamanders.
Abstract: Phylogenetic signal is the tendency for closely related species to display similar trait values due to their common ancestry. Several methods have been developed for quantifying phylogenetic signal in univariate traits and for sets of traits treated simultaneously, and the statistical properties of these approaches have been extensively studied. However, methods for assessing phylogenetic signal in high-dimensional multivariate traits like shape are less well developed, and their statistical performance is not well characterized. In this article, I describe a generalization of the K statistic of Blomberg et al. that is useful for quantifying and evaluating phylogenetic signal in highly dimensional multivariate data. The method (Kmult) is found from the equivalency between statistical methods based on covariance matrices and those based on distance matrices. Using computer simulations based on Brownian motion, I demonstrate that the expected value of Kmult remains at 1.0 as trait variation among species is increased or decreased, and as the number of trait dimensions is increased. By contrast, estimates of phylogenetic signal found with a squared-change parsimony procedure for multivariate data change with increasing trait variation among species and with increasing numbers of trait dimensions, confounding biological interpretations. I also evaluate the statistical performance of hypothesis testing procedures based on Kmult and find that the method displays appropriate Type I error and high statistical power for detecting phylogenetic signal in high- dimensional data. Statistical properties of Kmult were consistent for simulations using bifurcating and random phylogenies, for simulations using different numbers of species, for simulations that varied the number of trait dimensions, and for different underlying models of trait covariance structure. Overall these findings demonstrate that Kmult provides a useful means of evaluating phylogenetic signal in high-dimensional multivariate traits. Finally, I illustrate the utility of the new approach by evaluating the strength of phylogenetic signal for head shape in a lineage of Plethodon salamanders. (Geometric morphometrics; macroevolution; morphological evolution; phylogenetic comparative method.)

452 citations

Journal ArticleDOI
TL;DR: This survey samples some adaptations of bone that may occur over both length scales, and tries to show whether short- or long-term adaptation is important, and how the degree of hollowness is adapted to the life of the animal.

430 citations