scispace - formally typeset
Search or ask a question
Author

Jacques Côté

Bio: Jacques Côté is an academic researcher from Laval University. The author has contributed to research in topics: Chromatin & Histone. The author has an hindex of 66, co-authored 149 publications receiving 19330 citations. Previous affiliations of Jacques Côté include Howard Hughes Medical Institute & Pennsylvania State University.


Papers
More filters
Journal ArticleDOI
TL;DR: The function of Gcn5 as a hist one acetyltransferase within the Ada and SAGA adaptor complexes indicates the importance of histone acetylation during steps in transcription activation mediated by interactions with transcription activators and general transcription factors.
Abstract: The transcriptional adaptor protein Gcn5 has been identified as a nuclear histone acetyltransferase (HAT). Although recombinant yeast Gcn5 efficiently acetylates free histones, it fails to acetylate histones contained in nucleosomes, indicating that additional components are required for acetylation of chromosomal histones. We report here that Gcn5 functions as a catalytic subunit in two high-molecular-mass native HAT complexes, with apparent molecular masses of 0.8 and 1.8 megadalton (MD), respectively, which acetylate nucleosomal histones. Both the 0.8- and 1.8-MD Gcn5-containing complexes cofractionate with Ada2 and are lost in gcn5delta, ada2delta, or ada3delta yeast strains, illustrating that these HAT complexes are bona fide native Ada-transcriptional adaptor complexes. Importantly, the 1.8-MD adaptor/HAT complex also contains Spt gene products that are linked to TATA-binding protein (TBP) function. This complex is lost in spt20/ada5delta and spt7delta strains and Spt3, Spt7, Spt20/Ada5, Ada2, and Gcn5 all copurify with this nucleosomal HAT complex. Therefore, the 1.8-MD adaptor/HAT complex illustrates an interaction between Ada and Spt gene products and confirms the existence of a complex containing the TBP group of Spt proteins as demonstrated by genetic and biochemical studies. We have named this novel transcription regulatory complex SAGA (Spt-Ada-Gcn5-Acetyltransferase). The function of Gcn5 as a histone acetyltransferase within the Ada and SAGA adaptor complexes indicates the importance of histone acetylation during steps in transcription activation mediated by interactions with transcription activators and general transcription factors (i.e., TBP).

1,087 citations

Journal ArticleDOI
TL;DR: The results suggest that ATP-dependent chromatin remodeling can participate in transcriptional repression by assisting repressors in gaining access to chromatin.

976 citations

Journal ArticleDOI
06 Jul 2006-Nature
TL;DR: A novel class of methylated H3K4 effector domains—the PHD domains of the ING (for inhibitor of growth) family of tumour suppressor proteins—are identified and established a pivotal role for trimethylation of H 3K4 in gene repression and, potentially, tumour suppressing mechanisms.
Abstract: Dynamic regulation of diverse nuclear processes is intimately linked to covalent modifications of chromatin. Much attention has focused on methylation at lysine 4 of histone H3 (H3K4), owing to its association with euchromatic genomic regions. H3K4 can be mono-, di- or tri-methylated. Trimethylated H3K4 (H3K4me3) is preferentially detected at active genes, and is proposed to promote gene expression through recognition by transcription-activating effector molecules. Here we identify a novel class of methylated H3K4 effector domains--the PHD domains of the ING (for inhibitor of growth) family of tumour suppressor proteins. The ING PHD domains are specific and highly robust binding modules for H3K4me3 and H3K4me2. ING2, a native subunit of a repressive mSin3a-HDAC1 histone deacetylase complex, binds with high affinity to the trimethylated species. In response to DNA damage, recognition of H3K4me3 by the ING2 PHD domain stabilizes the mSin3a-HDAC1 complex at the promoters of proliferation genes. This pathway constitutes a new mechanism by which H3K4me3 functions in active gene repression. Furthermore, ING2 modulates cellular responses to genotoxic insults, and these functions are critically dependent on ING2 interaction with H3K4me3. Together, our findings establish a pivotal role for trimethylation of H3K4 in gene repression and, potentially, tumour suppressor mechanisms.

955 citations

Journal ArticleDOI
16 Nov 2007-Cell
TL;DR: The aim of this exhibition was to celebrate the 50th anniversary of the United States Declaration of Independence with a celebration of those who served in the armed forces and those who sacrificed in the conflicts of World War II.

902 citations

Journal ArticleDOI
01 Jul 1994-Science
TL;DR: It is shown that the purified SWI/SNF complex is composed of 10 subunits and includes the SWI1, SWI2/ SNF2, SWi3, SNF5, and SNF6 gene products, and suggests that a primary role of the SWi/SNf complex is to promote activator binding to nucleosomal DNA.
Abstract: The SWI/SNF protein complex is required for the enhancement of transcription by many transcriptional activators in yeast. Here it is shown that the purified SWI/SNF complex is composed of 10 subunits and includes the SWI1, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products. The complex exhibited DNA-stimulated adenosine triphosphatase (ATPase) activity, but lacked helicase activity. The SWI/SNF complex caused a 10- to 30-fold stimulation in the binding of GAL4 derivatives to nucleosomal DNA in a reaction that required adenosine triphosphate (ATP) hydrolysis but was activation domain-independent. Stimulation of GAL4 binding by the complex was abolished by a mutant SWI2 subunit, and was increased by the presence of a histone-binding protein, nucleoplasmin. A direct ATP-dependent interaction between the SWI/SNF complex and nucleosomal DNA was detected. These observations suggest that a primary role of the SWI/SNF complex is to promote activator binding to nucleosomal DNA.

898 citations


Cited by
More filters
Journal ArticleDOI
23 Feb 2007-Cell
TL;DR: The surface of nucleosomes is studded with a multiplicity of modifications that can dictate the higher-order chromatin structure in which DNA is packaged and can orchestrate the ordered recruitment of enzyme complexes to manipulate DNA.

10,046 citations

Journal ArticleDOI
10 Aug 2001-Science
TL;DR: It is proposed that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.
Abstract: Chromatin, the physiological template of all eukaryotic genetic information, is subject to a diverse array of posttranslational modifications that largely impinge on histone amino termini, thereby regulating access to the underlying DNA. Distinct histone amino-terminal modifications can generate synergistic or antagonistic interaction affinities for chromatin-associated proteins, which in turn dictate dynamic transitions between transcriptionally active or transcriptionally silent chromatin states. The combinatorial nature of histone amino-terminal modifications thus reveals a “histone code” that considerably extends the information potential of the genetic code. We propose that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.

9,309 citations

Journal ArticleDOI
TL;DR: The known histone modifications are described, where they are found genomically and discussed and some of their functional consequences are discussed, concentrating mostly on transcription where the majority of characterisation has taken place.
Abstract: Chromatin is not an inert structure, but rather an instructive DNA scaffold that can respond to external cues to regulate the many uses of DNA. A principle component of chromatin that plays a key role in this regulation is the modification of histones. There is an ever-growing list of these modifications and the complexity of their action is only just beginning to be understood. However, it is clear that histone modifications play fundamental roles in most biological processes that are involved in the manipulation and expression of DNA. Here, we describe the known histone modifications, define where they are found genomically and discuss some of their functional consequences, concentrating mostly on transcription where the majority of characterisation has taken place.

4,536 citations

Journal ArticleDOI
TL;DR: Recent findings reveal that all known E3s utilize one of just two catalytic domains--a HECT domain or a RING finger--and crystal structures have provided the first detailed views of an active site of each type.
Abstract: ▪ Abstract The conjugation of ubiquitin to other cellular proteins regulates a broad range of eukaryotic cell functions. The high efficiency and exquisite selectivity of ubiquitination reactions reflect the properties of enzymes known as ubiquitin-protein ligases or E3s. An E3 recognizes its substrates based on the presence of a specific ubiquitination signal, and catalyzes the formation of an isopeptide bond between a substrate (or ubiquitin) lysine residue and the C terminus of ubiquitin. Although a great deal is known about the molecular basis of E3 specificity, much less is known about molecular mechanisms of catalysis by E3s. Recent findings reveal that all known E3s utilize one of just two catalytic domains—a HECT domain or a RING finger—and crystal structures have provided the first detailed views of an active site of each type. The new findings shed light on many aspects of E3 structure, function, and mechanism, but also emphasize that key features of E3 catalysis remain to be elucidated.

3,570 citations

Journal ArticleDOI
23 Feb 2007-Cell
TL;DR: This Review highlights advances in the understanding of chromatin regulation and discusses how such regulation affects the binding of transcription factors as well as the initiation and elongation steps of transcription.

3,424 citations