scispace - formally typeset
Search or ask a question
Author

Jacques Gignoux

Bio: Jacques Gignoux is an academic researcher from École Normale Supérieure. The author has contributed to research in topics: Soil organic matter & Population. The author has an hindex of 20, co-authored 42 publications receiving 3137 citations.

Papers
More filters
Journal ArticleDOI
08 Dec 2005-Nature
TL;DR: It is shown, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than ∼650 mm is constrained by, and increases linearly with, MAP.
Abstract: Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties1–3. The availability of resources (water, nutrients) and disturbance regimes (fire, herbivory) are thought to be important in regulating woody cover1,2,4,5, but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than ,650mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered ‘stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP-controlled upper bound. Above a MAP of ,650mm, savannas are ‘unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances (fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation6 may considerably affect their distribution and dynamics.

1,740 citations

Journal ArticleDOI
01 Sep 1999-Ecology
TL;DR: A parsimonious scenario linking spatial pattern and mortality pattern during the life cycle of the palm tree Borassus aethiopum is proposed, where the last surviving juvenile of a clump suddenly experiences almost no competition with conspecifics, and can now recruit to the adult stage, subject only to senescence.
Abstract: Existing statistical methods for spatial pattern analysis now permit precise analyses of patterns and, given the appropriate interpretation keys, the formulation of testable hypotheses about the underlying processes. From a comprehensive analysis of the spatial pattern of a plant population and its environment, we infer scenarios of links between demographic processes, plant spatial patterns, and environmental heterogeneity. The palm tree Borassus aethiopum has easily identifiable demographic stages, a root foraging strategy enabling adults to reach distant nutrient sources, and a marked senescence starting with the onset of reproduction. We analyzed map data for palm individuals (in three different life history stages plus two sexes for adults) and for nutrient-rich patches (clumps of other tree species and termite mounds) in three vegetation types (facies) of a humid savanna of West Africa (Lamto, Ivory Coast). Spatial analyses were based on Diggle's nearest neighbor functions F and G and on Ripley's K function. The main results were as follows: (1) juveniles and seedlings are aggregated, while adults have a random pattern or are more loosely aggregated; (2) all stages except female adults are spatially associated with nutrient-rich patches, but association distances increase with stage in the life cycle; and (3) seedlings are associated with female adults, whereas the association of juveniles at longer distances is not clear-cut. We propose from these results a parsimonious scenario linking spatial pattern and mortality pattern during the life cycle. The initial pattern of seedlings (close to maternal trees) results from low dispersal distance. Later stages (older seedlings and juveniles) are mostly restricted to nutrient-rich patches through nutrient shortage away from these patches (environment-induced mortality) and form dense clumps of immature palms. Competition on nutrient-rich patches then favors the few juveniles that manage to survive farther from these patches (density-dependent mortality). Finally, the last surviving juvenile of a clump suddenly experiences almost no competition with conspecifics, due to the long distance between clumps of juveniles, and owing to its root-foraging ability, it can now recruit to the adult stage, subject only to senescence. Pattern variations among savanna facies are consistent with this scenario.

301 citations

Journal ArticleDOI
TL;DR: Fire resistance may interact with competition: it is suggested that differences in fire resistance strategies have important effects on the structure and dynamics of savanna ecosystems.
Abstract: Bark properties (mainly thickness) are usually presented as the main explanation for tree survival in intense fires. Savanna fires are mild, frequent, and supposed to affect tree recruitment rather than adult survival: trunk profile and growth rate of young trees between two successive fires can also affect survival. These factors and fire severity were measured on a sample of 20 trees near the recruitment stage of two savanna species chosen for their contrasted fire resistance strategies (Crossopteryx febrifuga and Piliostigma thonningii). Crossopteryx has a higher intrinsic resistance to fire (bark properties) than Piliostigma: a 20-mm-diameter stem of Crossopteryx survives exposure to 650°C, while Piliostigma needs a diameter of at least 40 mm to survive. Crossopteryx has a thicker trunk than Piliostigma: for two trees of the same height, the basal diameter of Crossopteryx will be 1.6 times greater. Piliostigma grows 2.26 times faster than Crossopteryx between two successive fires. The two species have different fire resistance strategies: one relies on resistance of aboveground structures to fire, while the other relies on its ability to quickly re-build aboveground structures. Crossopteryx is able to recruit in almost any fire conditions while Piliostigma needs locally or temporarily milder fire conditions. In savannas, fire resistance is a complex property which cannot be assessed simply by measuring only one of its components, such as bark thickness. Bark properties, trunk profile and growth rate define strategies of fire resistance. Fire resistance may interact with competition: we suggest that differences in fire resistance strategies have important effects on the structure and dynamics of savanna ecosystems.

249 citations

Journal ArticleDOI
TL;DR: Using a spatially explicit cellular automaton model, the effects of tree demography, fire-induced mortality, and seed dispersal on the spatial spread of a single tree species in a humid savanna at Lamto in West Africa are explored.
Abstract: Using a spatially explicit cellular automaton model we explore the effects of tree demography, fire-induced mortality, and seed dispersal on the spatial spread of a single tree species in a humid savanna at Lamto in West Africa. The model system is described by six parameters and consists of a grass-surrounded square grid of connecting cells, each being either inhabited by grass alone or by grass and an individual tree. In the baseline numerical simulations the tree can only recruit seedlings in immediately adjacent cells. These seedlings may perish from annual grass fires in their first year of life if they are not protected from the advancement of the fire by neighbouring reproductively mature trees (...)

129 citations

Journal ArticleDOI
TL;DR: In this article, the authors used capture-recapture statistical models to control for the probability of missing seedlings in the tall grass, and found that fire-responding species showed a 20-80% decrease in survival during the dry season, interpreted as mainly due to fire; "drought- responding" species showed 20- 80% variations in survival positively correlated with early growing-season rainfall.
Abstract: In severely disturbed habitats, the onset of resprouting as a persistence strategy might be problematic for tree species which do not accumulate sufficient reserves before the first disturbance event. This is due to the trade-off between the growth of reserves required to recover after disturbance and that of photosynthetic tissues. In humid savannas, fire prevents trees from invading the whole landscape and nearby gallery forests have a completely different floristic composition. We test if the variations of survival during the first years of a young tree's life can explain the exclusion of forest species and the dominance pattern within savanna species. Every six months for four years, we censused all seedlings and resprouts in 1 ha area of an annually burned savanna, to estimate their seasonal survival rates. We used capture-recapture statistical models to control for the probability of missing seedlings in the tall grass. There were two main distinct patterns of survival among seedlings: 'fire-responding' species showed a 20-80% decrease in survival during the dry season, interpreted as mainly due to fire; 'drought-responding' species showed 20-80% variations in survival positively correlated to early-growing-season rainfall. Yearly averaged survival probabilities of seedlings ranged between 0.10 and 0.63, reaching 0.850-0.996 for > 3-year-old resprouts of savanna species. Forest species showed no increase in survival with age. A 4-year-survival-probability analysis showed that forest species were excluded from the savanna at the seedling stage. No parameter of the early survival curve related to the abundance of savanna species at the adult stage. Synthesis. Savanna tree species follow two mutually exclusive main patterns of early survival probably related to fire and early-wet-season drought. The exclusion of forest species is consistent with a build up of reserves that is too slow due to the growth-resistance trade-off. We conclude from these findings that the use of resprouting as a persistence strategy is heavily constrained by disturbance frequency and imposes strong trade-offs on plant growth strategy.

101 citations


Cited by
More filters
Journal ArticleDOI

6,278 citations

Journal ArticleDOI
TL;DR: This paper provides an international methodological protocol aimed at standardising this research effort, based on consensus among a broad group of scientists in this field, and features a practical handbook with step-by-step recipes, for 28 functional traits recognised as critical for tackling large-scale ecological questions.
Abstract: There is growing recognition that classifying terrestrial plant species on the basis of their function (into 'functional types') rather than their higher taxonomic identity, is a promising way forward for tackling important ecological questions at the scale of ecosystems, landscapes or biomes. These questions include those on vegetation responses to and vegetation effects on, environmental changes (e.g. changes in climate, atmospheric chemistry, land use or other disturbances). There is also growing consensus about a shortlist of plant traits that should underlie such functional plant classifications, because they have strong predictive power of important ecosystem responses to environmental change and/or they themselves have strong impacts on ecosystem processes. The most favoured traits are those that are also relatively easy and inexpensive to measure for large numbers of plant species. Large international research efforts, promoted by the IGBP–GCTE Programme, are underway to screen predominant plant species in various ecosystems and biomes worldwide for such traits. This paper provides an international methodological protocol aimed at standardising this research effort, based on consensus among a broad group of scientists in this field. It features a practical handbook with step-by-step recipes, with relatively brief information about the ecological context, for 28 functional traits recognised as critical for tackling large-scale ecological questions.

3,288 citations

Journal ArticleDOI
TL;DR: Understanding of the widely observed increase in tree biomass following introduction of commercial ranching into savannas requires inclusion of interactions among browsers, grazers, and fires, and their effects on tree recruitment.
Abstract: Savannas occur where trees and grasses interact to create a biome that is neither grassland nor forest. Woody and gramineous plants interact by many mechanisms, some negative (competition) and some positive (facilitation). The strength and sign of the interaction varies in both time and space, allowing a rich array of possible outcomes but no universal predictive model. Simple models of coexistence of trees and grasses, based on separation in rooting depth, are theoretically and experimentally inadequate. Explanation of the widely observed increase in tree biomass following introduction of commercial ranching into savannas requires inclusion of interactions among browsers, grazers, and fires, and their effects on tree recruitment. Prediction of the consequences of manipulating tree biomass through clearing further requires an understanding of how trees modify light, water, and nutrient environments of grasses. Understanding the nature of coexistence between trees and grass, which under other circumstances...

2,436 citations

Journal ArticleDOI
TL;DR: The recent literature is reviewed, drawing parallels between fire and herbivores as alternative consumers of vegetation, and pointing to the common questions and some surprisingly different answers that emerge from viewing fire as a globally significant consumer that is analogous to herbivory.
Abstract: It is difficult to find references to fire in general textbooks on ecology, conservation biology or biogeography, in spite of the fact that large parts of the world burn on a regular basis, and that there is a considerable literature on the ecology of fire and its use for managing ecosystems. Fire has been burning ecosystems for hundreds of millions of years, helping to shape global biome distribution and to maintain the structure and function of fire-prone communities. Fire is also a significant evolutionary force, and is one of the first tools that humans used to re-shape their world. Here, we review the recent literature, drawing parallels between fire and herbivores as alternative consumers of vegetation. We point to the common questions, and some surprisingly different answers, that emerge from viewing fire as a globally significant consumer that is analogous to herbivory.

1,942 citations

Journal ArticleDOI
TL;DR: In this paper, a re-evaluation of our 10-year old paper on priming effects is presented, and the most important needs for future research are identified and evaluated.
Abstract: In this re-evaluation of our 10-year old paper on priming effects, I have considered the latest studies and tried to identify the most important needs for future research. Recent publications have shown that the increase or decrease in soil organic matter mineralization (measured as changes of CO 2 efflux and N mineralization) actually results from interactions between living (microbial biomass) and dead organic matter. The priming effect (PE) is not an artifact of incubation studies, as sometimes supposed, but is a natural process sequence in the rhizosphere and detritusphere that is induced by pulses or continuous inputs of fresh organics. The intensity of turnover processes in such hotspots is at least one order of magnitude higher than in the bulk soil. Various prerequisites for high-quality, informative PE studies are outlined: calculating the budget of labeled and total C; investigating the dynamics of released CO 2 and its sources; linking C and N dynamics with microbial biomass changes and enzyme activities; evaluating apparent and real PEs; and assessing PE sources as related to soil organic matter stabilization mechanisms. Different approaches for identifying priming, based on the assessment of more than two C sources in CO 2 and microbial biomass, are proposed and methodological and statistical uncertainties in PE estimation and approaches to eliminating them are discussed. Future studies should evaluate directions and magnitude of PEs according to expected climate and land-use changes and the increased rhizodeposition under elevated CO 2 as well as clarifying the ecological significance of PEs in natural and agricultural ecosystems. The conclusion is that PEs – the interactions between living and dead organic matter – should be incorporated in models of C and N dynamics, and that microbial biomass should regarded not only as a C pool but also as an active driver of C and N turnover.

1,470 citations