scispace - formally typeset
Search or ask a question
Author

Jacques Klein

Bio: Jacques Klein is an academic researcher from University of Luxembourg. The author has contributed to research in topics: Android (operating system) & Computer science. The author has an hindex of 44, co-authored 196 publications receiving 8445 citations. Previous affiliations of Jacques Klein include French Institute for Research in Computer Science and Automation.


Papers
More filters
Proceedings ArticleDOI
09 Jun 2014
TL;DR: FlowDroid is presented, a novel and highly precise static taint analysis for Android applications that successfully finds leaks in a subset of 500 apps from Google Play and about 1,000 malware apps from the VirusShare project.
Abstract: Today's smartphones are a ubiquitous source of private and confidential data. At the same time, smartphone users are plagued by carelessly programmed apps that leak important data by accident, and by malicious apps that exploit their given privileges to copy such data intentionally. While existing static taint-analysis approaches have the potential of detecting such data leaks ahead of time, all approaches for Android use a number of coarse-grain approximations that can yield high numbers of missed leaks and false alarms. In this work we thus present FlowDroid, a novel and highly precise static taint analysis for Android applications. A precise model of Android's lifecycle allows the analysis to properly handle callbacks invoked by the Android framework, while context, flow, field and object-sensitivity allows the analysis to reduce the number of false alarms. Novel on-demand algorithms help FlowDroid maintain high efficiency and precision at the same time. We also propose DroidBench, an open test suite for evaluating the effectiveness and accuracy of taint-analysis tools specifically for Android apps. As we show through a set of experiments using SecuriBench Micro, DroidBench, and a set of well-known Android test applications, FlowDroid finds a very high fraction of data leaks while keeping the rate of false positives low. On DroidBench, FlowDroid achieves 93% recall and 86% precision, greatly outperforming the commercial tools IBM AppScan Source and Fortify SCA. FlowDroid successfully finds leaks in a subset of 500 apps from Google Play and about 1,000 malware apps from the VirusShare project.

1,730 citations

Proceedings ArticleDOI
14 May 2016
TL;DR: This work presents a growing collection of Android Applications collected from several sources, including the official GooglePlay app market, which contains more than three million apps that have been analysed by tens of different AntiVirus products to know which applications are detected as Malware.
Abstract: We present a growing collection of Android Applications col-lected from several sources, including the official GooglePlay app market. Our dataset, AndroZoo, currently contains more than three million apps, each of which has beenanalysed by tens of different AntiVirus products to knowwhich applications are detected as Malware. We provide thisdataset to contribute to ongoing research efforts, as well asto enable new potential research topics on Android Apps.By releasing our dataset to the research community, we alsoaim at encouraging our fellow researchers to engage in reproducible experiments.

616 citations

Proceedings ArticleDOI
16 May 2015
TL;DR: IccTA, a static taint analyzer to detect privacy leaks among components in Android applications goes beyond state-of-the-art approaches by supporting inter- component detection and propagating context information among components, which improves the precision of the analysis.
Abstract: Shake Them All is a popular "Wallpaper" application exceeding millions of downloads on Google Play. At installation, this application is given permission to (1) access the Internet (for updating wallpapers) and (2) use the device microphone (to change background following noise changes). With these permissions, the application could silently record user conversations and upload them remotely. To give more confidence about how Shake Them All actually processes what it records, it is necessary to build a precise analysis tool that tracks the flow of any sensitive data from its source point to any sink, especially if those are in different components. Since Android applications may leak private data carelessly or maliciously, we propose IccTA, a static taint analyzer to detect privacy leaks among components in Android applications. IccTA goes beyond state-of-the-art approaches by supporting inter- component detection. By propagating context information among components, IccTA improves the precision of the analysis. IccTA outperforms existing tools on two benchmarks for ICC-leak detectors: DroidBench and ICC-Bench. Moreover, our approach detects 534 ICC leaks in 108 apps from MalGenome and 2,395 ICC leaks in 337 apps in a set of 15,000 Google Play apps.

556 citations

Proceedings Article
14 Aug 2013
TL;DR: This paper reduces the discovery of inter-component communication in smartphones to an instance of the Interprocedural Distributive Environment (IDE) problem, and develops a sound static analysis technique targeted to the Android platform that finds ICC vulnerabilities with far fewer false positives than the next best tool.
Abstract: Many threats present in smartphones are the result of interactions between application components, not just artifacts of single components. However, current techniques for identifying inter-application communication are ad hoc and do not scale to large numbers of applications. In this paper, we reduce the discovery of inter-component communication (ICC) in smartphones to an instance of the Interprocedural Distributive Environment (IDE) problem, and develop a sound static analysis technique targeted to the Android platform. We apply this analysis to 1,200 applications selected from the Play store and characterize the locations and substance of their ICC. Experiments show that full specifications for ICC can be identified for over 93% of ICC locations for the applications studied. Further the analysis scales well; analysis of each application took on average 113 seconds to complete. Epicc, the resulting tool, finds ICC vulnerabilities with far fewer false positives than the next best tool. In this way, we develop a scalable vehicle to extend current security analysis to entire collections of applications as well as the interfaces they export.

367 citations

Journal ArticleDOI
TL;DR: The research community is still facing a number of challenges for building approaches that are aware altogether of implicit-Flows, dynamic code loading features, reflective calls, native code and multi-threading, in order to implement sound and highly precise static analyzers.
Abstract: ContextStatic analysis exploits techniques that parse program source code or bytecode, often traversing program paths to check some program properties. Static analysis approaches have been proposed for different tasks, including for assessing the security of Android apps, detecting app clones, automating test cases generation, or for uncovering non-functional issues related to performance or energy. The literature thus has proposed a large body of works, each of which attempts to tackle one or more of the several challenges that program analyzers face when dealing with Android apps. ObjectiveWe aim to provide a clear view of the state-of-the-art works that statically analyze Android apps, from which we highlight the trends of static analysis approaches, pinpoint where the focus has been put, and enumerate the key aspects where future researches are still needed. MethodWe have performed a systematic literature review (SLR) which involves studying 124 research papers published in software engineering, programming languages and security venues in the last 5 years (January 2011December 2015). This review is performed mainly in five dimensions: problems targeted by the approach, fundamental techniques used by authors, static analysis sensitivities considered, android characteristics taken into account and the scale of evaluation performed. ResultsOur in-depth examination has led to several key findings: 1) Static analysis is largely performed to uncover security and privacy issues; 2) The Soot framework and the Jimple intermediate representation are the most adopted basic support tool and format, respectively; 3) Taint analysis remains the most applied technique in research approaches; 4) Most approaches support several analysis sensitivities, but very few approaches consider path-sensitivity; 5) There is no single work that has been proposed to tackle all challenges of static analysis that are related to Android programming; and 6) Only a small portion of state-of-the-art works have made their artifacts publicly available. ConclusionThe research community is still facing a number of challenges for building approaches that are aware altogether of implicit-Flows, dynamic code loading features, reflective calls, native code and multi-threading, in order to implement sound and highly precise static analyzers.

273 citations


Cited by
More filters
Journal Article
TL;DR: AspectJ as mentioned in this paper is a simple and practical aspect-oriented extension to Java with just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns.
Abstract: Aspect] is a simple and practical aspect-oriented extension to Java With just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns. In AspectJ's dynamic join point model, join points are well-defined points in the execution of the program; pointcuts are collections of join points; advice are special method-like constructs that can be attached to pointcuts; and aspects are modular units of crosscutting implementation, comprising pointcuts, advice, and ordinary Java member declarations. AspectJ code is compiled into standard Java bytecode. Simple extensions to existing Java development environments make it possible to browse the crosscutting structure of aspects in the same kind of way as one browses the inheritance structure of classes. Several examples show that AspectJ is powerful, and that programs written using it are easy to understand.

2,947 citations

Proceedings ArticleDOI
09 Jun 2014
TL;DR: FlowDroid is presented, a novel and highly precise static taint analysis for Android applications that successfully finds leaks in a subset of 500 apps from Google Play and about 1,000 malware apps from the VirusShare project.
Abstract: Today's smartphones are a ubiquitous source of private and confidential data. At the same time, smartphone users are plagued by carelessly programmed apps that leak important data by accident, and by malicious apps that exploit their given privileges to copy such data intentionally. While existing static taint-analysis approaches have the potential of detecting such data leaks ahead of time, all approaches for Android use a number of coarse-grain approximations that can yield high numbers of missed leaks and false alarms. In this work we thus present FlowDroid, a novel and highly precise static taint analysis for Android applications. A precise model of Android's lifecycle allows the analysis to properly handle callbacks invoked by the Android framework, while context, flow, field and object-sensitivity allows the analysis to reduce the number of false alarms. Novel on-demand algorithms help FlowDroid maintain high efficiency and precision at the same time. We also propose DroidBench, an open test suite for evaluating the effectiveness and accuracy of taint-analysis tools specifically for Android apps. As we show through a set of experiments using SecuriBench Micro, DroidBench, and a set of well-known Android test applications, FlowDroid finds a very high fraction of data leaks while keeping the rate of false positives low. On DroidBench, FlowDroid achieves 93% recall and 86% precision, greatly outperforming the commercial tools IBM AppScan Source and Fortify SCA. FlowDroid successfully finds leaks in a subset of 500 apps from Google Play and about 1,000 malware apps from the VirusShare project.

1,730 citations

01 Jan 2009
TL;DR: This paper presents a meta-modelling framework for modeling and testing the robustness of the modeled systems and some of the techniques used in this framework have been developed and tested in the field.
Abstract: ing WS1S Systems to Verify Parameterized Networks . . . . . . . . . . . . 188 Kai Baukus, Saddek Bensalem, Yassine Lakhnech and Karsten Stahl FMona: A Tool for Expressing Validation Techniques over Infinite State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 J.-P. Bodeveix and M. Filali Transitive Closures of Regular Relations for Verifying Infinite-State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Bengt Jonsson and Marcus Nilsson Diagnostic and Test Generation Using Static Analysis to Improve Automatic Test Generation . . . . . . . . . . . . . 235 Marius Bozga, Jean-Claude Fernandez and Lucian Ghirvu Efficient Diagnostic Generation for Boolean Equation Systems . . . . . . . . . . . . 251 Radu Mateescu Efficient Model-Checking Compositional State Space Generation with Partial Order Reductions for Asynchronous Communicating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Jean-Pierre Krimm and Laurent Mounier Checking for CFFD-Preorder with Tester Processes . . . . . . . . . . . . . . . . . . . . . . . 283 Juhana Helovuo and Antti Valmari Fair Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Thomas A. Henzinger and Sriram K. Rajamani Integrating Low Level Symmetries into Reachability Analysis . . . . . . . . . . . . . 315 Karsten Schmidt Model-Checking Tools Model Checking Support for the ASM High-Level Language . . . . . . . . . . . . . . 331 Giuseppe Del Castillo and Kirsten Winter Table of

1,687 citations

Journal Article
TL;DR: A framework for model driven engineering is set out, which proposes an organisation of the modelling 'space' and how to locate models in that space, and identifies the need for defining families of languages and transformations, and for developing techniques for generating/configuring tools from such definitions.
Abstract: The Object Management Group's (OMG) Model Driven Architecture (MDA) strategy envisages a world where models play a more direct role in software production, being amenable to manipulation and transformation by machine. Model Driven Engineering (MDE) is wider in scope than MDA. MDE combines process and analysis with architecture. This article sets out a framework for model driven engineering, which can be used as a point of reference for activity in this area. It proposes an organisation of the modelling 'space' and how to locate models in that space. It discusses different kinds of mappings between models. It explains why process and architecture are tightly connected. It discusses the importance and nature of tools. It identifies the need for defining families of languages and transformations, and for developing techniques for generating/configuring tools from such definitions. It concludes with a call to align metamodelling with formal language engineering techniques.

1,476 citations