scispace - formally typeset
Author

Jacques Locat

Other affiliations: University of Lausanne
Bio: Jacques Locat is an academic researcher from Laval University. The author has contributed to research in topic(s): Landslide & Submarine landslide. The author has an hindex of 37, co-authored 171 publication(s) receiving 5062 citation(s). Previous affiliations of Jacques Locat include University of Lausanne.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: A review and update from original data and literature reports the current state of knowledge of Storegga, Traenadjupet and Finneidfjord slides from the mid-Norwegian margin, Afen Slide from the Faeroe-Shetland Channel, BIG'95 Slide and Central Adriatic Deformation Belt (CADEB) from continental slope and inner continental shelf settings off the Ebro and Po rivers in the Mediterranean Sea, Canary Slide west of the westernmost, youngest Canary Islands and Gebra Slide off the northern tip of the Antarctic Peninsula
Abstract: Holocene and slightly pre-Holocene submarine landslide are found both in high-latitude glacial-dominated margins and in lower latitude, river-dominated margins. This paper constitutes a major assessment on some of the best-studied submarine instabilities in the world. We review and update from original data and literature reports the current state of knowledge of Storegga, Traenadjupet and Finneidfjord slides from the mid-Norwegian margin, Afen Slide from the Faeroe-Shetland Channel, BIG'95 Slide and Central Adriatic Deformation Belt (CADEB) from continental slope and inner continental shelf settings off the Ebro and Po rivers in the Mediterranean Sea, Canary Slide west of the westernmost, youngest Canary Islands and Gebra Slide off the northern tip of the Antarctic Peninsula in the southern hemisphere, i.e. those studied in the Continental Slope Stability (COSTA) project. The investigated slides range in size from the gigantic 90,000 km2 and almost 3000 km3 Storegga Slide to the tiny 1 km2 and 0.001 km3 Finneidfjord Slide. Not only do individual submarine landslides rarely involve processes precisely fitting with pre-established categories, mostly based on subaerial research, but also they display complex mechanical behaviors within the elastic and plastic fields. Individual events can involve simultaneous or successive vertical to translational movements including block detachment, block gliding, debris flow, mud flow and turbidity currents. The need for an in-depth revision of the classification criteria, and eventually for a new classification system, based on the new imaging capabilities provided by modern techniques, is more than obvious. We suggest a new system, which, for the moment, is restricted to debris flows and debris avalanches. Volume calculation methods are critically reviewed and the relations between some key geomorphic parameters are established for the selected slides. The assumed volume missing from scar areas does not necessarily match the actual volume of sediment remobilised by an individual event since in situ sediment can be remoulded and eventually incorporated during the slide downslope journey. CADEB, a shore-parallel prodelta detached from its source, is the exception to the good correlation found between across slope width and alongslope length with slide area. Height drop measured from the headwall upper rim to its foot correlates with the debris deposit maximum thickness unless the slide moves into restricted areas, which prevent farther forward expansion of the deposit, such as Gebra and BIG'95. In such cases, “over-thickened” deposits are found. A particularly loose and fluid behavior can be deduced for slides showing an “over-thinned” character, such as the Canary Slide that traveled 600 km. Scar areas and slip planes have been investigated with particular emphasis. Although slide headwalls might present locally steep gradients (up to 23° for Storegga Slide), the slope gradients of both the failed segment margins and the main slip planes are very low (max. 2° and usually around 1° and less). An exception is the Finneidfjord Slide (20°–<5°) that occurred in 1996 because of a combination of climatic and anthropogenic factors leading to excess pore pressure and failure. Mechanically distinct, low permeable clayey “weak layers” often correspond to slip planes beyond the slide headwall. Since not only formation of these “weak layers” but also sedimentation rates are climatically controlled, we can state that slide pre-conditioning is climatically driven too. Run-out distances reflect the degree of disintegration of the failed mass of sediment, the total volume of initially failed material and transport mechanisms, including hydroplanning. Commonly, specific run-outs could be attributed to distinct elements, such as cohesive blocks and looser matrix, as nicely illustrated by the BIG'95 Slide. Total run-outs usually correspond to matrix run-outs since the coarser elements tend to rest at shorter distances. Outrunner blocks are, finally, a very common feature proving the ability of those elements to glide over long distances with independence of the rest of the failed mass. In addition to pre-conditioning factors related to geological setting and sedimentation conditions, a final trigger is required for submarine landslides to take place, which is most often assumed to be an earthquake. In high latitude margins, earthquake magnitude intensification because of post-glacial isostatic rebound has likely played a major role in triggering landslides. Although it cannot be totally ruled out, there is little proof, at least amongst the COSTA slides, that gas hydrate destabilisation or other processes linked to the presence of shallow gas have acted as final triggers.

326 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, a laboratory investigation on the quicklime stabilization of sensitive clays has shown that significant strength increase can be obtained if enough water content above the liquid limit is added to the clays.
Abstract: A laboratory investigation on the quicklime stabilization of sensitive clays has shown that, even at a water content above the liquid limit, significant strength increase can be obtained if enough ...

242 citations

Journal ArticleDOI

[...]

TL;DR: The rheological behavior of some sensitive clays has shown that there are positive relationships between plastic viscosity, yield stress, remolded shear strength, and liquidity index as mentioned in this paper.
Abstract: The rheological behavior of some sensitive clays has shown that there are positive relationships between plastic viscosity, yield stress, remolded shear strength, and liquidity index. Based on the ...

225 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, it is known that organic matter may affect the cementing process in soils, but what happens when cement is added to an organic soil? Both the organic matter content and the nature of this orga...
Abstract: It is well known that organic matter may affect the cementing process in soils, but what happens when cement is added to an organic soil? Both the organic matter content and the nature of this orga...

211 citations

Journal ArticleDOI

[...]

TL;DR: A reassessment of these features strongly suggests that numerous turbidity currents, separated by intervals of ambient hemipelagic sedimentation, deposited the wave fields over thousands of years as discussed by the authors.
Abstract: Migrating sediment waves have been reported in a variety of marine settings, including submarine levee–fan systems, floors of fjords, and other basin or continental slope environments. Examination of such wave fields reveals nine diagnostic characteristics. When these characteristics are applied to several features previously attributed to submarine landslide deformation, they suggest that the features should most likely be reinterpreted as migrating sediment-wave fields. Sites that have been reinterpreted include the ‘Humboldt slide’ on the Eel River margin in northern California, the continental slope in the Gulf of Cadiz, the continental shelf off the Malaspina Glacier in the Gulf of Alaska, and the Adriatic shelf. A reassessment of all four features strongly suggests that numerous turbidity currents, separated by intervals of ambient hemipelagic sedimentation, deposited the wave fields over thousands of years. A numerical model of hyperpycnal discharge from the Eel River, for example, shows that under certain alongshore-current conditions, such events can produce turbidity currents that flow across the ‘Humboldt slide’, serving as the mechanism for the development of migrating sediment waves. Numerical experiments also demonstrate that where a series of turbidity currents flows across a rough seafloor (i.e. numerical steps), sediment waves can form and migrate upslope. Hemipelagic sedimentation between turbidity current events further facilitates the upslope migration of the sediment waves. Physical modelling of turbidity currents also confirms the formation and migration of seafloor bedforms. The morphologies of sediment waves generated both numerically and physically in the laboratory bear a strong resemblance to those observed in the field, including those that were previously described as submarine landslides.

196 citations


Cited by
More filters
Journal ArticleDOI

[...]

TL;DR: A simple classification of sedimentary density flows, based on physical flow properties and grain-support mechanisms, and briefly discusses the likely characteristics of the deposited sediments is presented in this paper.
Abstract: The complexity of flow and wide variety of depositional processes operating in subaqueous density flows, combined with post-depositional consolidation and soft-sediment deformation, often make it difficult to interpret the characteristics of the original flow from the sedimentary record. This has led to considerable confusion of nomenclature in the literature. This paper attempts to clarify this situation by presenting a simple classification of sedimentary density flows, based on physical flow properties and grain-support mechanisms, and briefly discusses the likely characteristics of the deposited sediments. Cohesive flows are commonly referred to as debris flows and mud flows and defined on the basis of sediment characteristics. The boundary between cohesive and non-cohesive density flows (frictional flows) is poorly constrained, but dimensionless numbers may be of use to define flow thresholds. Frictional flows include a continuous series from sediment slides to turbidity currents. Subdivision of these flows is made on the basis of the dominant particle-support mechanisms, which include matrix strength (in cohesive flows), buoyancy, pore pressure, grain-to-grain interaction (causing dispersive pressure), Reynolds stresses (turbulence) and bed support (particles moved on the stationary bed). The dominant particle-support mechanism depends upon flow conditions, particle concentration, grain-size distribution and particle type. In hyperconcentrated density flows, very high sediment concentrations (>25 volume%) make particle interactions of major importance. The difference between hyperconcentrated density flows and cohesive flows is that the former are friction dominated. With decreasing sediment concentration, vertical particle sorting can result from differential settling, and flows in which this can occur are termed concentrated density flows. The boundary between hyperconcentrated and concentrated density flows is defined by a change in particle behaviour, such that denser or larger grains are no longer fully supported by grain interaction, thus allowing coarse-grain tail (or dense-grain tail) normal grading. The concentration at which this change occurs depends on particle size, sorting, composition and relative density, so that a single threshold concentration cannot be defined. Concentrated density flows may be highly erosive and subsequently deposit complete or incomplete Lowe and Bouma sequences. Conversely, hydroplaning at the base of debris flows, and possibly also in some hyperconcentrated flows, may reduce the fluid drag, thus allowing high flow velocities while preventing large-scale erosion. Flows with concentrations <9% by volume are true turbidity flows (sensuBagnold, 1962), in which fluid turbulence is the main particle-support mechanism. Turbidity flows and concentrated density flows can be subdivided on the basis of flow duration into instantaneous surges, longer duration surge-like flows and quasi-steady currents. Flow duration is shown to control the nature of the resulting deposits. Surge-like turbidity currents tend to produce classical Bouma sequences, whose nature at any one site depends on factors such as flow size, sediment type and proximity to source. In contrast, quasi-steady turbidity currents, generated by hyperpycnal river effluent, can deposit coarsening-up units capped by fining-up units (because of waxing and waning conditions respectively) and may also include thick units of uniform character (resulting from prolonged periods of near-steady conditions). Any flow type may progressively change character along the transport path, with transformation primarily resulting from reductions in sediment concentration through progressive entrainment of surrounding fluid and/or sediment deposition. The rate of fluid entrainment, and consequently flow transformation, is dependent on factors including slope gradient, lateral confinement, bed roughness, flow thickness and water depth. Flows with high and low sediment concentrations may co-exist in one transport event because of downflow transformations, flow stratification or shear layer development of the mixing interface with the overlying water (mixing cloud formation). Deposits of an individual flow event at one site may therefore form from a succession of different flow types, and this introduces considerable complexity into classifying the flow event or component flow types from the deposits.

1,301 citations

Journal ArticleDOI

[...]

TL;DR: From an evolutionary perspective, recent investigations provide evidence that bioturbation had a key role in the evolution of metazoan life at the end of the Precambrian Era.
Abstract: Bioturbation refers to the biological reworking of soils and sediments, and its importance for soil processes and geomorphology was first realised by Charles Darwin, who devoted his last scientific book to the subject. Here, we review some new insights into the evolutionary and ecological role of bioturbation that would have probably amazed Darwin. In modern ecological theory, bioturbation is now recognised as an archetypal example of ‘ecosystem engineering’, modifying geochemical gradients, redistributing food resources, viruses, bacteria, resting stages and eggs. From an evolutionary perspective, recent investigations provide evidence that bioturbation had a key role in the evolution of metazoan life at the end of the Precambrian Era.

632 citations

Journal ArticleDOI

[...]

TL;DR: Monitoring of critical areas where landslides might be imminent and modelling landslide consequences so that appropriate mitigation strategies can be developed would appear to be areas where advances on current practice are possible.
Abstract: Huge landslides, mobilizing hundreds to thousands of km3 of sediment and rock are ubiquitous in submarine settings ranging from the steepest volcanic island slopes to the gentlest muddy slopes of submarine deltas. Here, we summarize current knowledge of such landslides and the problems of assessing their hazard potential. The major hazards related to submarine landslides include destruction of seabed infrastructure, collapse of coastal areas into the sea and landslide-generated tsunamis. Most submarine slopes are inherently stable. Elevated pore pressures (leading to decreased frictional resistance to sliding) and specific weak layers within stratified sequences appear to be the key factors influencing landslide occurrence. Elevated pore pressures can result from normal depositional processes or from transient processes such as earthquake shaking; historical evidence suggests that the majority of large submarine landslides are triggered by earthquakes. Because of their tsunamigenic potential, ocean-island flank collapses and rockslides in fjords have been identified as the most dangerous of all landslide related hazards. Published models of ocean-island landslides mainly examine ‘worst-case scenarios’ that have a low probability of occurrence. Areas prone to submarine landsliding are relatively easy to identify, but we are still some way from being able to forecast individual events with precision. Monitoring of critical areas where landslides might be imminent and modelling landslide consequences so that appropriate mitigation strategies can be developed would appear to be areas where advances on current practice are possible.

627 citations

Journal ArticleDOI

[...]

TL;DR: A short history of the appraisal of laser scanner technologies in geosciences used for imaging relief by high-resolution digital elevation models (HRDEMs) or 3D models is presented in this paper.
Abstract: This paper presents a short history of the appraisal of laser scanner technologies in geosciences used for imaging relief by high-resolution digital elevation models (HRDEMs) or 3D models. A general overview of light detection and ranging (LIDAR) techniques applied to landslides is given, followed by a review of different applications of LIDAR for landslide, rockfall and debris-flow. These applications are classified as: (1) Detection and characterization of mass movements; (2) Hazard assessment and susceptibility mapping; (3) Modelling; (4) Monitoring. This review emphasizes how LIDAR-derived HRDEMs can be used to investigate any type of landslides. It is clear that such HRDEMs are not yet a common tool for landslides investigations, but this technique has opened new domains of applications that still have to be developed.

616 citations

Journal ArticleDOI

[...]

TL;DR: Due to the recent development of well-integrated surveying techniques of the sea floor, significant improvements were achieved in mapping and describing the morphology and architecture of submarine seafloor as discussed by the authors.
Abstract: Due to the recent development of well-integrated surveying techniques of the sea floor, significant improvements were achieved in mapping and describing the morphology and architecture of submarine...

594 citations