scispace - formally typeset
Search or ask a question
Author

Jacques Mehler

Bio: Jacques Mehler is an academic researcher from International School for Advanced Studies. The author has contributed to research in topics: Syllable & Language acquisition. The author has an hindex of 78, co-authored 188 publications receiving 23493 citations. Previous affiliations of Jacques Mehler include Harvard University & French Institute of Health and Medical Research.


Papers
More filters
Journal ArticleDOI
TL;DR: Four-day-old French and 2-month-old American infants distinguish utterances in their native languages from those of another language, and two experiments with low-pass-filtered versions of the samples replicated the main findings of discrimination of the native language utterances.

1,268 citations

Journal ArticleDOI
TL;DR: In this article, the authors present instrumental measurements based on a consonant/vowel segmentation for eight languages and show that intuitive rhythm types reflect specific phonological properties, which in turn are signaled by the acoustic/phonetic properties of speech.

1,168 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compare regional cerebral blood flow (rCBF) while French monolingual subjects listen to continuous speech in an unknown language, to lists of French words, or to meaningful and distorted stories in French.
Abstract: In this study, we compare regional cerebral blood flow (rCBF) while French monolingual subjects listen to continuous speech in an unknown language, to lists of French words, or to meaningful and distorted stories in French. Our results show that, in addition to regions devoted to single-word comprehension, processing of meaningful stories activates the left middle temporal gyrus, the left and right temporal poles, and a superior prefrontal area in the left frontal lobe. Among these regions, only the temporal poles remain activated whenever sentences with acceptable syntax and prosody are presented.

691 citations

Journal ArticleDOI
01 Oct 1998-Brain
TL;DR: Findings suggest that, at least for pairs of L1 and L2 languages that are fairly close, attained proficiency is more important than age of acquisition as a determinant of the cortical representation of L2.
Abstract: Functional imaging methods show differences in the pattern of cerebral activation associated with the subject's native language (L1) compared with a second language (L2). In a recent PET investigation on bilingualism we showed that auditory processing of stories in L1 (Italian) engages the temporal lobes and temporoparietal cortex more extensively than L2 (English). However, in that study the Italian subjects learned L2 late and attained a fair, but not an excellent command of this language (low proficiency, late acquisition bilinguals). Thus, the different patterns of activation could be ascribed either to age of acquisition or to proficiency level. In the current study we use a similar paradigm to evaluate the effect of early and late acquisition of L2 in highly proficient bilinguals. We studied a group of Italian-English bilinguals who acquired L2 after the age of 10 years (high proficiency, late acquisition bilinguals) and a group of Spanish-Catalan bilinguals who acquired L2 before the age of 4 years (high proficiency, early acquisition bilinguals). The differing cortical responses we had observed when low proficiency volunteers listened to stories in L1 and L2 were not found in either of the high proficiency groups in this study. Several brain areas, similar to those observed for L1 in low proficiency bilinguals, were activated by L2. These findings suggest that, at least for pairs of L1 and L2 languages that are fairly close, attained proficiency is more important than age of acquisition as a determinant of the cortical representation of L2.

679 citations

Journal ArticleDOI
TL;DR: This article investigated the ability of French newborns to discriminate between sets of sentences in different foreign languages and found that infants use prosodic and, more specifically, rhythmic information to classify utterances into broad language classes defined according to global rhythmic properties.
Abstract: Three experiments investigated the ability of French newborns to discriminate between sets of sentences in different foreign languages. The sentences were low-pass filtered to reduce segmental information while sparing prosodic information. Infants discriminated between stress-timed English and mora-timed Japanese (Experiment 1) but failed to discriminate between stress-timed English and stress-timed Dutch (Experiment 2). In Experiment 3, infants heard different combinations of sentences from English, Dutch, Spanish, and Italian. Discrimination was observed only when English and Dutch sentences were contrasted with Spanish and Italian sentences. These results suggest that newborns use prosodic and, more specifically, rhythmic information to classify utterances into broad language classes defined according to global rhythmic properties. Implications of this for the acquisition of the rhythmic properties of the native language are discussed.

677 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Illustration de trois fonctions principales qui sont predominantes dans l'etude de l'intervention de l'sattention dans les processus cognitifs: 1) orientation vers des evenements sensoriels; 2) detection des signaux par processus focal; 3) maintenir la vigilance en etat d'alerte
Abstract: : The concept of attention as central to human performance extends back to the start of experimental psychology, yet even a few years ago, it would not have been possible to outline in even a preliminary form a functional anatomy of the human attentional system. New developments in neuroscience have opened the study of higher cognition to physiological analysis, and have revealed a system of anatomical areas that appear to be basic to the selection of information for focal (conscious) processing. The importance of attention is its unique role in connecting the mental level of description of processes used in cognitive science with the anatomical level common in neuroscience. Sperry describes the central role that mental concepts play in understanding brain function. As is the case for sensory and motor systems of the brain, our knowledge of the anatomy of attention is incomplete. Nevertheless, we can now begin to identify some principles of organization that allow attention to function as a unified system for the control of mental processing. Although many of our points are still speculative and controversial, we believe they constitute a basis for more detailed studies of attention from a cognitive-neuroscience viewpoint. Perhaps even more important for furthering future studies, multiple methods of mental chronometry, brain lesions, electrophysiology, and several types of neuro-imaging have converged on common findings.

7,237 citations

Journal ArticleDOI
13 Dec 1996-Science
TL;DR: The present study shows that a fundamental task of language acquisition, segmentation of words from fluent speech, can be accomplished by 8-month-old infants based solely on the statistical relationships between neighboring speech sounds.
Abstract: Learners rely on a combination of experience-independent and experience-dependent mechanisms to extract information from the environment. Language acquisition involves both types of mechanisms, but most theorists emphasize the relative importance of experience-independent mechanisms. The present study shows that a fundamental task of language acquisition, segmentation of words from fluent speech, can be accomplished by 8-month-old infants based solely on the statistical relationships between neighboring speech sounds. Moreover, this word segmentation was based on statistical learning from only 2 minutes of exposure, suggesting that infants have access to a powerful mechanism for the computation of statistical properties of the language input.

4,352 citations

Journal ArticleDOI
TL;DR: A dual-stream model of speech processing is outlined that assumes that the ventral stream is largely bilaterally organized — although there are important computational differences between the left- and right-hemisphere systems — and that the dorsal stream is strongly left- Hemisphere dominant.
Abstract: Despite decades of research, the functional neuroanatomy of speech processing has been difficult to characterize. A major impediment to progress may have been the failure to consider task effects when mapping speech-related processing systems. We outline a dual-stream model of speech processing that remedies this situation. In this model, a ventral stream processes speech signals for comprehension, and a dorsal stream maps acoustic speech signals to frontal lobe articulatory networks. The model assumes that the ventral stream is largely bilaterally organized--although there are important computational differences between the left- and right-hemisphere systems--and that the dorsal stream is strongly left-hemisphere dominant.

4,234 citations

Journal ArticleDOI
TL;DR: The model can handle some of the main observations in the domain of speech errors (the major empirical domain for most other theories of lexical access), and the theory opens new ways of approaching the cerebral organization of speech production by way of high-temporal-resolution imaging.
Abstract: Preparing words in speech production is normally a fast and accurate process. We generate them two or three per second in fluent conversation; and overtly naming a clear picture of an object can easily be initiated within 600 msec after picture onset. The underlying process, however, is exceedingly complex. The theory reviewed in this target article analyzes this process as staged and feed-forward. After a first stage of conceptual preparation, word generation proceeds through lexical selection, morphological and phonological encoding, phonetic encoding, and articulation itself. In addition, the speaker exerts some degree of output control, by monitoring of self-produced internal and overt speech. The core of the theory, ranging from lexical selection to the initiation of phonetic encoding, is captured in a computational model, called WEAVER++. Both the theory and the computational model have been developed in interaction with reaction time experiments, particularly in picture naming or related word production paradigms, with the aim of accounting for the real-time processing in normal word production. A comprehensive review of theory, model, and experiments is presented. The model can handle some of the main observations in the domain of speech errors (the major empirical domain for most other theories of lexical access), and the theory opens new ways of approaching the cerebral organization of speech production by way of high-temporal-resolution imaging.

3,958 citations