scispace - formally typeset
Search or ask a question
Author

Jacques Meunier

Bio: Jacques Meunier is an academic researcher from École Normale Supérieure. The author has contributed to research in topics: Wetting & Microemulsion. The author has an hindex of 45, co-authored 158 publications receiving 8919 citations. Previous affiliations of Jacques Meunier include University of Hull & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid is examined, while the hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film.
Abstract: Wetting phenomena are ubiquitous in nature and technology. A solid substrate exposed to the environment is almost invariably covered by a layer of fluid material. In this review, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid. Depending on the nature of the surface forces involved, different scenarios for wetting phase transitions are possible; recent progress allows us to relate the critical exponents directly to the nature of the surface forces which lead to the different wetting scenarios. Thermal fluctuation effects, which can be greatly enhanced for wetting of geometrically or chemically structured substrates, and are much stronger in colloidal suspensions, modify the adsorption singularities. Macroscopic descriptions and microscopic theories have been developed to understand and predict wetting behavior relevant to microfluidics and nanofluidics applications. Then the dynamics of wetting is examined. A drop, placed on a substrate which it wets, spreads out to form a film. Conversely, a nonwetted substrate previously covered by a film dewets upon an appropriate change of system parameters. The hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film only. Recent theoretical, experimental, and numerical progress in the description of moving contact line dynamics are reviewed, and its relation to the thermodynamics of wetting is explored. In addition, recent progress on rough surfaces is surveyed. The anchoring of contact lines and contact angle hysteresis are explored resulting from surface inhomogeneities. Further, new ways to mold wetting characteristics according to technological constraints are discussed, for example, the use of patterned surfaces, surfactants, or complex fluids.

2,501 citations

Journal ArticleDOI
TL;DR: In this paper, a microscope employing the characteristics of the reflection at the Brewster angle has been built for the study of first-order phase transitions in monolayers and the growth of two-dimensional domains without adding fluorescent impurities.
Abstract: A microscope employing the characteristics of the reflection at the Brewster angle has been built for the study of first‐order phase transitions in monolayers and the growth of two‐dimensional domains without adding fluorescent impurities. It takes about 2.4 s to constitute an image.

771 citations

Journal ArticleDOI
TL;DR: A general phase diagram for charged colloidal systems is proposed and it is shown that a transition from the glass to the gel state can be induced by changing the interparticle interactions from predominantly repulsive to attractive.
Abstract: Two types of isotropic disordered nonergodic states exist in colloidal suspensions: glasses and gels. The difference between the two is that the nonergodicity, or elasticity, of gel stems from the existence of a percolated network, while that of glass stems from caging effects. Despite this clear difference in the origin of nonergodicity, it is not straightforward to distinguish the two states in a clear manner. Taking a Laponite suspension as an explicit example, we propose a general phase diagram for charged colloidal systems. It follows that a transition from the glass to the gel state can be induced by changing the interparticle interactions from predominantly repulsive to attractive. This originates from the competition between electrostatic Coulomb repulsion and van der Waals attraction. If the repulsion dominates, the system forms a Wigner glass, while in a predominantly attractive situation it forms a gel. In the intermediate region, where both repulsive and attractive interactions play roles, it may form an attractive glass.

262 citations

Journal ArticleDOI
16 Sep 1999-Langmuir
TL;DR: Solutions of the synthetic clay Laponite are strongly viscoelastic, even at very low particle concentrations, and the formation of a gel, evidenced by the existence of a fractal network, has been invok...
Abstract: Solutions of the synthetic clay Laponite are strongly viscoelastic, even at very low particle concentrations. The formation of a gel, evidenced by the existence of a fractal network, has been invok...

240 citations

BookDOI
01 Jan 1987

203 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compare the behavior observed in systems containing either particles or surfactant molecules in the areas of adsorption to interfaces, partitioning between phases and solid-stabilised emulsions and foams.
Abstract: Colloidal particles act in many ways like surfactant molecules, particularly if adsorbed to a fluid–fluid interface. Just as the water or oil-liking tendency of a surfactant is quantified in terms of the hydrophile–lipophile balance (HLB) number, so can that of a spherical particle be described in terms of its wettability via contact angle. Important differences exist, however, between the two types of surface-active material, due in part to the fact that particles are strongly held at interfaces. This review attempts to correlate the behaviour observed in systems containing either particles or surfactant molecules in the areas of adsorption to interfaces, partitioning between phases and solid-stabilised emulsions and foams.

3,202 citations

Journal ArticleDOI
TL;DR: In this article, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid is examined, while the hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film.
Abstract: Wetting phenomena are ubiquitous in nature and technology. A solid substrate exposed to the environment is almost invariably covered by a layer of fluid material. In this review, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid. Depending on the nature of the surface forces involved, different scenarios for wetting phase transitions are possible; recent progress allows us to relate the critical exponents directly to the nature of the surface forces which lead to the different wetting scenarios. Thermal fluctuation effects, which can be greatly enhanced for wetting of geometrically or chemically structured substrates, and are much stronger in colloidal suspensions, modify the adsorption singularities. Macroscopic descriptions and microscopic theories have been developed to understand and predict wetting behavior relevant to microfluidics and nanofluidics applications. Then the dynamics of wetting is examined. A drop, placed on a substrate which it wets, spreads out to form a film. Conversely, a nonwetted substrate previously covered by a film dewets upon an appropriate change of system parameters. The hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film only. Recent theoretical, experimental, and numerical progress in the description of moving contact line dynamics are reviewed, and its relation to the thermodynamics of wetting is explored. In addition, recent progress on rough surfaces is surveyed. The anchoring of contact lines and contact angle hysteresis are explored resulting from surface inhomogeneities. Further, new ways to mold wetting characteristics according to technological constraints are discussed, for example, the use of patterned surfaces, surfactants, or complex fluids.

2,501 citations

Journal ArticleDOI
14 May 1999-Science
TL;DR: The results suggest a new class of synthetic thin-shelled capsules based on block copolymer chemistry, and both the membrane bending and area expansion moduli of electroformed polymersomes (polymer-based liposomes) fell within the range of lipid membrane measurements.
Abstract: Vesicles were made from amphiphilic diblock copolymers and characterized by micromanipulation. The average molecular weight of the specific polymer studied, polyethyleneoxide-polyethylethylene (EO40-EE37), is several times greater than that of typical phospholipids in natural membranes. Both the membrane bending and area expansion moduli of electroformed polymersomes (polymer-based liposomes) fell within the range of lipid membrane measurements, but the giant polymersomes proved to be almost an order of magnitude tougher and sustained far greater areal strain before rupture. The polymersome membrane was also at least 10 times less permeable to water than common phospholipid bilayers. The results suggest a new class of synthetic thin-shelled capsules based on block copolymer chemistry.

2,338 citations

Journal ArticleDOI
TL;DR: In this paper, the free energy of formation of emulsion drops covered with close-packed monolayers of monodisperse spherical particles was investigated and the possibility of preparing novel solid materials by evaporating solid-stabilised emulsions is also proposed.

2,114 citations