scispace - formally typeset
Search or ask a question
Author

Jacques Rougemont

Bio: Jacques Rougemont is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Gene & Promoter. The author has an hindex of 27, co-authored 50 publications receiving 10072 citations. Previous affiliations of Jacques Rougemont include Swiss Institute of Bioinformatics.

Papers
More filters
Journal ArticleDOI
TL;DR: This work developed, implemented, and thoroughly tested rapid bootstrap heuristics in RAxML (Randomized Axelerated Maximum Likelihood) that are more than an order of magnitude faster than current algorithms and can contribute to resolving the computational bottleneck and improve current methodology in phylogenetic analyses.
Abstract: Despite recent advances achieved by application of high-performance computing methods and novel algorithmic techniques to maximum likelihood (ML)-based inference programs, the major computational bottleneck still consists in the computation of bootstrap support values. Conducting a probably insufficient number of 100 bootstrap (BS) analyses with current ML programs on large datasets—either with respect to the number of taxa or base pairs—can easily require a month of run time. Therefore, we have developed, implemented, and thoroughly tested rapid bootstrap heuristics in RAxML (Randomized Axelerated Maximum Likelihood) that are more than an order of magnitude faster than current algorithms. These new heuristics can contribute to resolving the computational bottleneck and improve current methodology in phylogenetic analyses. Computational experiments to assess the performance and relative accuracy of these heuristics were conducted on 22 diverse DNA and AA (amino acid), single gene as well as multigene, real-world alignments containing 125 up to 7764 sequences. The standard BS (SBS) and rapid BS (RBS) values drawn on the best-scoring ML tree are highly correlated and show almost identical average support values. The weighted RF (Robinson-Foulds) distance between SBS- and RBS-based consensus trees was smaller than 6% in all cases (average 4%). More importantly, RBS inferences are between 8 and 20 times faster (average 14.73) than SBS analyses with RAxML and between 18 and 495 times faster than BS analyses with competing programs, such as PHYML or GARLI. Moreover, this performance improvement increases with alignment size. Finally, we have set up two freely accessible Web servers for this significantly improved version of RAxML that provide access to the 200-CPU cluster of the Vital-IT unit at the Swiss Institute of Bioinformatics and the 128-CPU cluster of the CIPRES project at the San Diego Supercomputer Center. These Web servers offer the possibility to conduct large-scale phylogenetic inferences to a large part of the community that does not have access to, or the expertise to use, high-performance computing resources. (Maximum likelihood; phylogenetic inference; rapid bootstrap; RAxML; support values.)

6,585 citations

Journal ArticleDOI
14 Jan 2010-Nature
TL;DR: It is shown that KAP1 deletion leads to a marked upregulation of a range of ERVs, in particular IAP elements, in mouse embryonic stem (ES) cells and in early embryos, and that it is enriched at the 5′ untranslated region (5′UTR) of IAP genomes.
Abstract: More than forty per cent of the mammalian genome is derived from retroelements, of which about one-quarter are endogenous retroviruses (ERVs). Some are still active, notably in mice the highly polymorphic early transposon (ETn)/MusD and intracisternal A-type particles (IAP). ERVs are transcriptionally silenced during early embryogenesis by histone and DNA methylation (and reviewed in ref. 7), although the initiators of this process, which is essential to protect genome integrity, remain largely unknown. KAP1 (KRAB-associated protein 1, also known as tripartite motif-containing protein 28, TRIM28) represses genes by recruiting the histone methyltransferase SETDB1, heterochromatin protein 1 (HP1) and the NuRD histone deacetylase complex, but few of its physiological targets are known. Two lines of evidence suggest that KAP1-mediated repression could contribute to the control of ERVs: first, KAP1 can trigger permanent gene silencing during early embryogenesis, and second, a KAP1 complex silences the retrovirus murine leukaemia virus in embryonic cells. Consistent with this hypothesis, here we show that KAP1 deletion leads to a marked upregulation of a range of ERVs, in particular IAP elements, in mouse embryonic stem (ES) cells and in early embryos. We further demonstrate that KAP1 acts synergistically with DNA methylation to silence IAP elements, and that it is enriched at the 5' untranslated region (5'UTR) of IAP genomes, where KAP1 deletion leads to the loss of histone 3 lysine 9 trimethylation (H3K9me3), a hallmark of KAP1-mediated repression. Correspondingly, IAP 5'UTR sequences can impose in cis KAP1-dependent repression on a heterologous promoter in ES cells. Our results establish that KAP1 controls endogenous retroelements during early embryonic development.

663 citations

Journal ArticleDOI
TL;DR: Temporal mapping during a circadian day of binding sites for the BMAL1 transcription factor in mouse liver reveals genome-wide daily rhythms in DNA binding and uncovers output functions that are controlled by the circadian oscillator.
Abstract: The mammalian circadian clock uses interlocked negative feedback loops in which the heterodimeric basic helix-loop-helix transcription factor BMAL1/CLOCK is a master regulator. While there is prominent control of liver functions by the circadian clock, the detailed links between circadian regulators and downstream targets are poorly known. Using chromatin immunoprecipitation combined with deep sequencing we obtained a time-resolved and genome-wide map of BMAL1 binding in mouse liver, which allowed us to identify over 2,000 binding sites, with peak binding narrowly centered around Zeitgeber time 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites. Genomic sequence analysis of the sites identified E-boxes and tandem E1-E2 consensus elements. Electromobility shift assays showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative interaction, a finding that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA expression profiles with a phase distribution centered at Zeitgeber time 10. Importantly, sites with E1-E2 elements showed tighter phases both in binding and mRNA accumulation. Finally, analyzing the temporal profiles of BMAL1 binding, precursor mRNA and mature mRNA levels showed how transcriptional and post-transcriptional regulation contribute differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how genes of the core circadian oscillator crosstalk and drive phase-specific circadian output programs in a complex tissue.

435 citations

Journal ArticleDOI
TL;DR: Sixteen interrelated SNP subtypes were defined by genotyping both extant and extinct strains of M. leprae from around the world and showed a strong geographical association that reflects the migration patterns of early humans and trade routes, with the Silk Road linking Europe to China having contributed to the spread of leprosy.
Abstract: Reductive evolution and massive pseudogene formation have shaped the 3.31-Mb genome of Mycobacterium leprae, an unculturable obligate pathogen that causes leprosy in humans. The complete genome sequence of M. leprae strain Br4923 from Brazil was obtained by conventional methods (6x coverage), and Illumina resequencing technology was used to obtain the sequences of strains Thai53 (38x coverage) and NHDP63 (46x coverage) from Thailand and the United States, respectively. Whole-genome comparisons with the previously sequenced TN strain from India revealed that the four strains share 99.995% sequence identity and differ only in 215 polymorphic sites, mainly SNPs, and by 5 pseudogenes. Sixteen interrelated SNP subtypes were defined by genotyping both extant and extinct strains of M. leprae from around the world. The 16 SNP subtypes showed a strong geographical association that reflects the migration patterns of early humans and trade routes, with the Silk Road linking Europe to China having contributed to the spread of leprosy.

349 citations

Journal ArticleDOI
17 Nov 2015-Immunity
TL;DR: Chronic infection with the murine helminth Heligmosomoides polygyrus bakeri altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production and a similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions.

331 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work presents some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees.
Abstract: Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting postanalyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU

23,838 citations

Journal ArticleDOI
TL;DR: A new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves and a new test to assess the support of the data for internal branches of a phylogeny are introduced.
Abstract: PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publication (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704), PhyML has been widely used (>2500 citations in ISI Web of Science) because of its simplicity and a fair compromise between accuracy and speed. In the meantime, research around PhyML has continued, and this article describes the new algorithms and methods implemented in the program. First, we introduce a new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves. The parsimony criterion is used here to filter out the least promising topology modifications with respect to the likelihood function. The analysis of a large collection of real nucleotide and amino acid data sets of various sizes demonstrates the good performance of this method. Second, we describe a new test to assess the support of the data for internal branches of a phylogeny. This approach extends the recently proposed approximate likelihood-ratio test and relies on a nonparametric, Shimodaira-Hasegawa-like procedure. A detailed analysis of real alignments sheds light on the links between this new approach and the more classical nonparametric bootstrap method. Overall, our tests show that the last version (3.0) of PhyML is fast, accurate, stable, and ready to use. A Web server and binary files are available from http://www.atgc-montpellier.fr/phyml/.

14,385 citations

Journal ArticleDOI
10 Mar 2010-PLOS ONE
TL;DR: Improvements to FastTree are described that improve its accuracy without sacrificing scalability, and FastTree 2 allows the inference of maximum-likelihood phylogenies for huge alignments.
Abstract: Background We recently described FastTree, a tool for inferring phylogenies for alignments with up to hundreds of thousands of sequences. Here, we describe improvements to FastTree that improve its accuracy without sacrificing scalability.

10,010 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: This work developed a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm), which achieved good results compared to existing methods, and it is believed it will be a valuable asset to automated microbial annotation pipelines.
Abstract: The quality of automated gene prediction in microbial organisms has improved steadily over the past decade, but there is still room for improvement. Increasing the number of correct identifications, both of genes and of the translation initiation sites for each gene, and reducing the overall number of false positives, are all desirable goals. With our years of experience in manually curating genomes for the Joint Genome Institute, we developed a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm). With Prodigal, we focused specifically on the three goals of improved gene structure prediction, improved translation initiation site recognition, and reduced false positives. We compared the results of Prodigal to existing gene-finding methods to demonstrate that it met each of these objectives. We built a fast, lightweight, open source gene prediction program called Prodigal http://compbio.ornl.gov/prodigal/ . Prodigal achieved good results compared to existing methods, and we believe it will be a valuable asset to automated microbial annotation pipelines.

7,157 citations