scispace - formally typeset
Search or ask a question
Author

Jacyln D Gavino

Bio: Jacyln D Gavino is an academic researcher from Brigham and Women's Hospital. The author has contributed to research in topics: Cell signaling & Selectin. The author has an hindex of 2, co-authored 2 publications receiving 381 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Antagonists that target cellular interactions with E-selectin and other members of the selectin family, including neutralizing monoclonal antibodies, competitive ligand inhibitors or metabolic carbohydrate mimetics, exemplify a growing arsenal of potentially effective therapeutics in controlling inflammation and the metastatic behavior of cancer.
Abstract: Inflammation and cancer metastasis are associated with extravasation of leukocytes or tumor cells from blood into tissue. Such movement is believed to follow a coordinated and sequential molecular cascade initiated, in part, by the three members of the selectin family of carbohydrate-binding proteins: E-selectin (CD62E), L-selectin (CD62L) and P-selectin (CD62P). E-selectin is particularly noteworthy in disease by virtue of its expression on activated endothelium and on bone-skin microvascular linings and for its role in cell rolling, cell signaling and chemotaxis. E-selectin, along with L- or P-selectin, mediates cell tethering and rolling interactions through the recognition of sialo-fucosylated Lewis carbohydrates expressed on structurally diverse protein-lipid ligands on circulating leukocytes or tumor cells. Major advances in understanding the role of E-selectin in inflammation and cancer have been advanced by experiments assaying E-selectin-mediated rolling of leukocytes and tumor cells under hydrodynamic shear flow, by clinical models of E-selectin-dependent inflammation, by mice deficient in E-selectin and by mice deficient in glycosyltransferases that regulate the binding activity of E-selectin ligands. Here, the authors elaborate on how E-selectin and its ligands may facilitate leukocyte or tumor cell recruitment in inflammatory and metastatic settings. Antagonists that target cellular interactions with E-selectin and other members of the selectin family, including neutralizing monoclonal antibodies, competitive ligand inhibitors or metabolic carbohydrate mimetics, exemplify a growing arsenal of potentially effective therapeutics in controlling inflammation and the metastatic behavior of cancer.

357 citations

Journal ArticleDOI
TL;DR: The results implicate the importance of alpha1,3 FT3, FT6, and/or FT7 in sLe(X) and ESL synthesis on metastatic PCa cells and contrast the expression level of glycosyltransferases in ESL(+) MDA cells among other ESL(-) metastaticPCa cell lines.
Abstract: Prostate cancer (PCa) cell tethering and rolling on microvascular endothelium has been proposed to promote the extravasation of PCa cells. We have shown that these adhesive events are mediated through binding interactions between endothelial (E)-selectin and Lewis carbohydrates on PCa cells. Prior data indicate that E-selectin-mediated rolling of bone-metastatic PCa MDA PCa 2b (MDA) cells is dependent on sialyl Lewis X (sLe(X))-bearing glycoproteins. To explore the molecular basis of sLe(X) synthesis and E-selectin ligand (ESL) activity on PCa cells, we compared and contrasted the expression level of glycosyltransferases, characteristically involved in sLe(X) and ESL synthesis, in ESL(+) MDA cells among other ESL(-) metastatic PCa cell lines. We also created and examined ESL(hi) and ESL(lo) variants of MDA cells to provide a direct comparison of the glycosyltransferase expression level. We found that normal prostate tissue and all metastatic PCa cell lines expressed glycosyltransferases required for sialo-lactosamine synthesis, including N-acetylglucosaminyl-, galactosyl-, and sialyltransferases. However, compared with expression in normal prostate tissue, ESL(+) MDA cells expressed a 31- and 10-fold higher level of alpha1,3 fucosyltransferases (FT) 3 and 6, respectively. Moreover, FT3 and FT6 were expressed at 2- to 354-fold lower levels in ESL(-) PCa cell lines. Consistent with these findings, ESL(hi) MDA cells expressed a 131- and 51-fold higher level of FT3 and FT6, respectively, compared with expression in ESL(lo) MDA cells. We also noted that alpha1,3 FT7 was expressed at a 5-fold greater level in ESL(hi) MDA cells. Furthermore, ESL(lo) MDA cells did not display sLe(X) on glycoproteins capable of bearing sLe(X), notably P-selectin glycoprotein ligand-1. These results implicate the importance of alpha1,3 FT3, FT6, and/or FT7 in sLe(X) and ESL synthesis on metastatic PCa cells.

50 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury.
Abstract: Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury.

2,813 citations

Journal ArticleDOI
TL;DR: Examples of approved carbohydrate-derived drugs are examined, the potential of carbohydrate-binding proteins as new drug targets are discussed (focusing on the lectin families) and ways to overcome the challenges of developing this unique class of novel therapeutics are considered.
Abstract: Carbohydrates are the most abundant natural products. Besides their role in metabolism and as structural building blocks, they are fundamental constituents of every cell surface, where they are involved in vital cellular recognition processes. Carbohydrates are a relatively untapped source of new drugs and therefore offer exciting new therapeutic opportunities. Advances in the functional understanding of carbohydrate-protein interactions have enabled the development of a new class of small-molecule drugs, known as glycomimetics. These compounds mimic the bioactive function of carbohydrates and address the drawbacks of carbohydrate leads, namely their low activity and insufficient drug-like properties. Here, we examine examples of approved carbohydrate-derived drugs, discuss the potential of carbohydrate-binding proteins as new drug targets (focusing on the lectin families) and consider ways to overcome the challenges of developing this unique class of novel therapeutics.

664 citations

Journal ArticleDOI
TL;DR: Alterations in glycosylation appear to not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis.
Abstract: Neoplastic transformation results in a wide variety of cellular alterations that impact the growth, survival, and general behavior of affected tissue. Although genetic alterations underpin the development of neoplastic disease, epigenetic changes can exert an equally significant effect on neoplastic transformation. Among neoplasia-associated epigenetic alterations, changes in cellular glycosylation have recently received attention as a key component of neoplastic progression. Alterations in glycosylation appear to not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Many of these changes may support neoplastic progression, and unique alterations in tumor-associated glycosylation may also serve as a distinct feature of cancer cells and therefore provide novel diagnostic and even therapeutic targets.

592 citations

Journal ArticleDOI
TL;DR: Overall protein structural conservation within the CAP superfamily results in fundamentally similar functions for the CAP domain in all members, yet the diversity outside of this core region dramatically alters target specificity and, therefore, the biological consequences.
Abstract: The cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily members are found in a remarkable range of organisms spanning each of the animal kingdoms. Within humans and mice, there are 31 and 33 individual family members, respectively, and although many are poorly characterized, the majority show a notable expression bias to the reproductive tract and immune tissues or are deregulated in cancers. CAP superfamily proteins are most often secreted and have an extracellular endocrine or paracrine function and are involved in processes including the regulation of extracellular matrix and branching morphogenesis, potentially as either proteases or protease inhibitors; in ion channel regulation in fertility; as tumor suppressor or prooncogenic genes in tissues including the prostate; and in cell-cell adhesion during fertilization. This review describes mammalian CAP superfamily gene expression profiles, phylogenetic relationships, protein structural properties, and biological functions, and it draws into focus their potential role in health and disease. The nine subfamilies of the mammalian CAP superfamily include: the human glioma pathogenesis-related 1 (GLIPR1), Golgi associated pathogenesis related-1 (GAPR1) proteins, peptidase inhibitor 15 (PI15), peptidase inhibitor 16 (PI16), cysteine-rich secretory proteins (CRISPs), CRISP LCCL domain containing 1 (CRISPLD1), CRISP LCCL domain containing 2 (CRISPLD2), mannose receptor like and the R3H domain containing like proteins. We conclude that overall protein structural conservation within the CAP superfamily results in fundamentally similar functions for the CAP domain in all members, yet the diversity outside of this core region dramatically alters target specificity and, therefore, the biological consequences.

406 citations

Journal ArticleDOI
TL;DR: There is accumulating evidence for the potential of selectins to contribute to a number of pathophysiological processes, including cancer metastasis, and current evidence for selectins as potential facilitators of metastasis is discussed.

393 citations