scispace - formally typeset
Search or ask a question
Author

Jae Bok Lee

Bio: Jae Bok Lee is an academic researcher from Yonsei University. The author has contributed to research in topics: Graphene & Heterojunction. The author has an hindex of 13, co-authored 24 publications receiving 657 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The design of a wideband spiral antenna for ingestible capsule endoscope systems is presented and a comparison between the experimental results in a human phantom and a pig under general anesthesia is compared.
Abstract: This paper presents the design of a wideband spiral antenna for ingestible capsule endoscope systems and a comparison between the experimental results in a human phantom and a pig under general anesthesia. As wireless capsule endoscope systems transmit real-time internal biological image data at a high resolution to external receivers and because they operate in the human body, a small wideband antenna is required. To incorporate these properties, a thick-arm spiral structure is applied to the designed antenna. To make practical and efficient use of antennas inside the human body, which is composed of a high dielectric and lossy material, the resonance characteristics and radiation patterns were evaluated through a measurement setup using a liquid human phantom. The total height of the designed antenna is 5 mm and the diameter is 10 mm. The fractional bandwidth of the fabricated antenna is about 21% with a voltage standing-wave ratio of less than 2, and it has an isotropic radiation pattern. These characteristics are suitable for wideband capsule endoscope systems. Moreover, the received power level was measured using the proposed antenna, a circular polarized receiver antenna, and a pig under general anesthesia. Finally, endoscopic capsule images in the stomach and large intestine were captured using an on-off keying transceiver system.

140 citations

Journal ArticleDOI
TL;DR: This study suggests a simple way to simultaneously address all of these issues through the addition of a small amount of a nonionic surfactant (Triton X-100) to commercial PEDOT:PSS solutions.
Abstract: The use of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in electrodes and electrical circuits presents a number of challenges that are yet to be overcome, foremost amongst which are its relatively low conductivity, low coatability on hydrophobic substrates, and decreased conductivity at large strains. With this in mind, this study suggests a simple way to simultaneously address all of these issues through the addition of a small amount of a nonionic surfactant (Triton X-100) to commercial PEDOT:PSS solutions. This surfactant is shown to considerably reduce the surface tension of the PEDOT:PSS solution, thus permitting conformal coatings of PEDOT:PSS thin film on a diverse range of hydrophobic substrates. Furthermore, this surfactant induces the formation of PEDOT nanofibrils during coating, which led to the high conductivity values and mechanical stability at large strains (e=10.3%). Taking advantage of the superior characteristics of these PEDOT:PSS thin films, a highly flexible polymer solar cell was fabricated. The power conversion efficiency of this solar cell (3.14% at zero strain) was preserved at large strains (e=7.0%).

135 citations

Journal ArticleDOI
Xiang Chen1, Yong Ju Park1, Tanmoy Das1, Houk Jang1, Jae Bok Lee1, Jong Hyun Ahn1 
TL;DR: This study reveals a novel method to fabricate and use patterned MoS2 and graphene-MoS2 heterojunctions, which could be generalized to the rational design of other 2D materials, heterojunction and devices in the future.
Abstract: Application-oriented patterned growth of transition metal dichalcogenides (TMDCs) and their heterojunctions is of critical importance for sophisticated, customized two-dimensional (2D) electronic and optoelectronic devices; however, it is still difficult to fabricate these patterns in a simple, clean, and high controllability manner without using optical lithography. Here, we report the direct synthesis of patterned MoS2 and graphene–MoS2 heterojunctions via selective plasma treatment of a SiO2/Si substrate and chemical vapor deposition of MoS2. This method has multiple merits, such as simple steps, a short operating time, easily isolated MoS2 layers with clean surfaces and controllable locations, shapes, sizes and thicknesses, which enable their integration into the device structure without using a photoresist. In addition, we demonstrate the direct growth of patterned graphene–MoS2 heterojunctions for the fabrication of transistor. This study reveals a novel method to fabricate and use patterned MoS2 and graphene–MoS2 heterojunctions, which could be generalized to the rational design of other 2D materials, heterojunctions and devices in the future.

68 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate room-temperature operation of a novel mid-IR photodetector based on a graphene-Bi2Se3 heterostructure showing broadband detection and high responsivity.
Abstract: Broadband detection of mid-infrared (IR) photons extends to advanced optoelectronic applications such as imaging, sensing, and telecommunications. While graphene offers an attractive platform for broadband visible/IR photodetection, previous efforts to improve its responsivity, for example, by integrating light-absorbing colloids or waveguide or antenna fabrication, were achieved at the cost of reduced photon detection bandwidth. In this work, we demonstrate room-temperature operation of a novel mid-IR photodetector based on a graphene–Bi2Se3 heterostructure showing broadband detection and high responsivity (1.97 and 8.18 A/W at mid- and near-IR, respectively), in which simultaneous improvement of the spectral range and responsivity is achieved via exploiting broadband absorption of mid-IR and IR photons in a small-band-gap Bi2Se3 topological insulator and efficient hot carrier separation and strong photogating across the Bi2Se3/graphene interface. With sufficient room for further improvement by interface...

67 citations

Journal ArticleDOI
TL;DR: A promising method for observing graphene domains grown by chemical vapour deposition using a liquid crystal layer is reported, providing an effective route to evaluating the quality and reliability of graphene sheets for use in various electronic devices.
Abstract: Determining graphene domain size and distribution is important for realizing functional electronic devices. Here, the authors use liquid crystals to study graphene surfaces, via the liquid crystal molecules aligning with the domains, and use nematic to smectic transitions to study defects.

65 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, various physical and chemical approaches that can effectively improve the electrical conductivity of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT:PSS) are summarized.
Abstract: The rapid development of novel organic technologies has led to significant applications of the organic electronic devices such as light-emitting diodes, solar cells, and field-effect transistors. There is a great need for conducting polymers with high conductivity and transparency to act as the charge transport layer or electrical interconnect in organic devices. Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT:PSS), well-known as the most remarkable conducting polymer, has this role owing to its good film-forming properties, high transparency, tunable conductivity, and excellent thermal stability. In this Review, various of interesting physical and chemical approaches that can effectively improve the electrical conductivity of PEDOT:PSS are summarized, focusing especially on the mechanism of the conductivity enhancement as well as applications of PEDOT:PSS films. Prospects for future research efforts are also provided. It is expected that PEDOT:PSS films with high conductivity and transparency could be the focus of future organic electronic materials breakthroughs.

751 citations

Journal ArticleDOI
TL;DR: In this review, recent progress in materials and devices for future wearable sensor technologies for bio and medical applications are reported.
Abstract: Printable electronics present a new era of wearable electronic technologies. Detailed technologies consisting of novel ink semiconductor materials, flexible substrates, and unique processing methods can be integrated to create flexible sensors. To detect various stimuli of the human body, as well as specific environments, unique electronic devices formed by "ink-based semiconductors" onto flexible and/or stretchable substrates have become a major research trend in recent years. Materials such as inorganic, organic, and hybrid semiconductors with various structures (i.e., 1D, 2D and 3D) with printing capabilities have been considered for bio and medical applications. In this review, we report recent progress in materials and devices for future wearable sensor technologies.

589 citations

Journal ArticleDOI
TL;DR: These strategies include blending with plasticizers or polymers, deposition on elastomers, formation of fibers and gels, and the use of intrinsically stretchable scaffolds for the polymerization of PEDOT.
Abstract: The conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT), and especially its complex with poly(styrene sulfonate) (PEDOT:PSS), is perhaps the most well-known example of an organic conductor. It is highly conductive, largely transmissive to light, processible in water, and highly flexible. Much recent work on this ubiquitous material has been devoted to increasing its deformability beyond flexibility-a characteristic possessed by any material that is sufficiently thin-toward stretchability, a characteristic that requires engineering of the structure at the molecular- or nanoscale. Stretchability is the enabling characteristic of a range of applications envisioned for PEDOT in energy and healthcare, such as wearable, implantable, and large-area electronic devices. High degrees of mechanical deformability allow intimate contact with biological tissues and solution-processable printing techniques (e.g., roll-to-roll printing). PEDOT:PSS, however, is only stretchable up to around 10%. Here, the strategies that have been reported to enhance the stretchability of conductive polymers and composites based on PEDOT and PEDOT:PSS are highlighted. These strategies include blending with plasticizers or polymers, deposition on elastomers, formation of fibers and gels, and the use of intrinsically stretchable scaffolds for the polymerization of PEDOT.

546 citations

Journal ArticleDOI
TL;DR: The production and fabrication methods used for target device applications, including logic devices, energy-harvesting devices, sensors, and bioinspired devices, and the various types of flexible and stretchable electronic devices enabled by graphene are discussed.
Abstract: Graphene provides outstanding properties that can be integrated into various flexible and stretchable electronic devices in a conventional, scalable fashion. The mechanical, electrical, and optical properties of graphene make it an attractive candidate for applications in electronics, energy-harvesting devices, sensors, and other systems. Recent research progress on graphene-based flexible and stretchable electronics is reviewed here. The production and fabrication methods used for target device applications are first briefly discussed. Then, the various types of flexible and stretchable electronic devices that are enabled by graphene are discussed, including logic devices, energy-harvesting devices, sensors, and bioinspired devices. The results represent important steps in the development of graphene-based electronics that could find applications in the area of flexible and stretchable electronics.

515 citations