scispace - formally typeset
Search or ask a question
Author

Jae-Ho Lee

Bio: Jae-Ho Lee is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Vesicle & Amatuximab. The author has an hindex of 15, co-authored 28 publications receiving 1275 citations. Previous affiliations of Jae-Ho Lee include Technion – Israel Institute of Technology & National Institute of Standards and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: This review will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery, including a review of current activities in the field of liposomes, and challenging issues of targeting and triggering will be discussed in detail.
Abstract: In recent years, various nanotechnology platforms in the area of medical biology, including both diagnostics and therapy, have gained remarkable attention. Moreover, research and development of engineered multifunctional nanoparticles as pharmaceutical drug carriers have spurred exponential growth in applications to medicine in the last decade. Design principles of these nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, drug-carrier conjugates, antibody-drug complexes, and magnetic nanoparticles, are primarily based on unique assemblies of synthetic, natural, or biological components, including but not limited to synthetic polymers, metal ions, oils, and lipids as their building blocks. However, the potential success of these particles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Among these, lipid-based nanoparticles bear the advantage of being the least toxic for in vivo applications, and significant progress has been made in the area of DNA/RNA and drug delivery using lipid-based nanoassemblies. In this review, we will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery. We begin with a review of current activities in the field of liposomes (the so-called honorary nanoparticles), and challenging issues of targeting and triggering will be discussed in detail. We will further describe nanoparticles derived from a novel class of amphipathic lipids called bolaamphiphiles with unique lipid assembly features that have been recently examined as drug/DNA delivery vehicles. Finally, an overview of an emerging novel class of particles (based on lipid components other than phospholipids), solid lipid nanoparticles and nanostructured lipid carriers will be presented. We conclude with a few examples of clinically successful formulations of currently available lipid-based nanoparticles.

768 citations

Journal ArticleDOI
04 Jan 2005-Langmuir
TL;DR: The results suggest a gel structure in which the vesicles are connected by polymer chains into a three-dimensional network in which each vesicle acts as a multifunctional junction in the network structure.
Abstract: The effect of adding an associating biopolymer to surfactant vesicles and micelles is studied using rheology and small-angle neutron scattering (SANS). The associating polymer is obtained by randomly tethering hydrophobic alkyl chains to the backbone of the polysaccharide, chitosan. Adding this polymer to surfactant vesicles results in a gel; that is, the sample transforms from a Newtonian liquid to an elastic solid having frequency-independent dynamic shear moduli. SANS shows that the vesicles remain intact within the gel. The results suggest a gel structure in which the vesicles are connected by polymer chains into a three-dimensional network. Vesicle-polymer binding is expected to occur via the insertion of polymer hydrophobes into the vesicle bilayer. Each vesicle thus acts as a multifunctional junction in the network structure. Significantly, gel formation does not occur with the native chitosan that has no hydrophobes. Moreover, adding the hydrophobically modified chitosan to a viscous sample containing wormlike micelles increases the viscosity further but does not give rise to a gel-like response. Thus, the formation of a robust gel network requires both the presence of hydrophobes on the polymer and vesicles in solution.

155 citations

Journal ArticleDOI
TL;DR: It is shown that liposome gels possess an attractive combination of properties for certain drug delivery applications, including shear-thinning property that allows these gels to be injected at a particular site, while their gel-like nature at rest ensures that the material will remain localized at that site.

59 citations

Journal ArticleDOI
TL;DR: In this paper, superparamagnetic iron oxide nanoparticles (SPIONs) have been used for labeling mammalian cells providing the basis for cellular MRI in experimental models, and several methods have been developed to facilitate the uptake of SPION by endocytosis in cells.
Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) have been used for labeling mammalian cells providing the basis for cellular MRI in experimental models.[1-4] Several methods have been developed to facilitate the uptake of SPION by endocytosis in cells.[1-5] The advantage of one particular SPION, ferumoxides, is that it is an food and drug administration (FDA) approved MRI contrast agent for hepatic imaging that is presently being used off-label for clinical cellular imaging studies.[6] By mixing ferumoxides (FE) contrast agent, a molecule with a negative zeta potential, with protamine sulfate (Pro), a polycation that is an FDA approved drug for the treatment of heparin anticoagulation overdose, a self-assembled complex forms that has been used to efficiently and effectively label cells.[3] The FE-Pro complex does not require any complex synthesis or modification of the SPION, and it has been proven less toxic than other chemical conjugation methods.[7]

56 citations

Journal ArticleDOI
23 Jun 2006-Langmuir
TL;DR: Results show the permeability of the catanionic membrane is an order of magnitude lower than that of phosphatidylcholine vesicles and the loading capacity is more than 10 times greater.
Abstract: Vesicles formed from the cationic surfactant, cetyltrimethylammonium tosylate (CTAT) and the anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), were used to sequester the anionic dye carboxyfluorescein. Carboxyfluorescein was efficiently sequestered in CTAT-rich vesicles via two mechanisms: encapsulation in the inner water pool and electrostatic adsorption to the charged bilayer. The apparent encapsulation efficiency (22%) includes both encapsulated and adsorbed fractions. Entrapment of carboxyfluorescein by SDBS-rich vesicles was not observed. Results show the permeability of the catanionic membrane is an order of magnitude lower than that of phosphatidylcholine vesicles and the loading capacity is more than 10 times greater.

55 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed overview of the synthesis, properties and applications of nanoparticles exist in different forms NPs are tiny materials having size ranges from 1 to 100nm They can be classified into different classes based on their properties, shapes or sizes.

3,282 citations

01 May 2005

2,648 citations

Journal ArticleDOI
TL;DR: The advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications are discussed.
Abstract: The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.

1,573 citations

Journal ArticleDOI
TL;DR: The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology where required.
Abstract: Drugs with low water solubility are predisposed to low and variable oral bioavailability and, therefore, to variability in clinical response. Despite significant efforts to "design in" acceptable developability properties (including aqueous solubility) during lead optimization, approximately 40% of currently marketed compounds and most current drug development candidates remain poorly water-soluble. The fact that so many drug candidates of this type are advanced into development and clinical assessment is testament to an increasingly sophisticated understanding of the approaches that can be taken to promote apparent solubility in the gastrointestinal tract and to support drug exposure after oral administration. Here we provide a detailed commentary on the major challenges to the progression of a poorly water-soluble lead or development candidate and review the approaches and strategies that can be taken to facilitate compound progression. In particular, we address the fundamental principles that underpin the use of strategies, including pH adjustment and salt-form selection, polymorphs, cocrystals, cosolvents, surfactants, cyclodextrins, particle size reduction, amorphous solid dispersions, and lipid-based formulations. In each case, the theoretical basis for utility is described along with a detailed review of recent advances in the field. The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology (e.g., solid dispersions, lipid-based formulations, or salt forms) where required.

1,201 citations