scispace - formally typeset
Search or ask a question
Author

Jae-kon Lee

Bio: Jae-kon Lee is an academic researcher from Samsung. The author has contributed to research in topics: MIMO & Beamforming. The author has an hindex of 12, co-authored 28 publications receiving 2536 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This article presents recent results from channel measurement campaigns and the development of advanced algorithms and a prototype, which clearly demonstrate that the mmWave band may indeed be a worthy candidate for next generation (5G) cellular systems.
Abstract: The ever growing traffic explosion in mobile communications has recently drawn increased attention to the large amount of underutilized spectrum in the millimeter-wave frequency bands as a potentially viable solution for achieving tens to hundreds of times more capacity compared to current 4G cellular networks. Historically, mmWave bands were ruled out for cellular usage mainly due to concerns regarding short-range and non-line-of-sight coverage issues. In this article, we present recent results from channel measurement campaigns and the development of advanced algorithms and a prototype, which clearly demonstrate that the mmWave band may indeed be a worthy candidate for next generation (5G) cellular systems. The results of channel measurements carried out in both the United States and Korea are summarized along with the actual free space propagation measurements in an anechoic chamber. Then a novel hybrid beamforming scheme and its link- and system-level simulation results are presented. Finally, recent results from our mmWave prototyping efforts along with indoor and outdoor test results are described to assert the feasibility of mmWave bands for cellular usage.

2,405 citations

Journal ArticleDOI
TL;DR: A new radio frame structure for the future mobile cellular communications system at millimeter wave frequency is proposed that addresses challenges of key functions such as cell search, random access, measurement of beams for fast beam adaptation, and various physical control and data channels.
Abstract: High data rate at high mobile speed will still be an essential requirement for the future 5G mobile cellular system. High frequency bands above 6 GHz are particularly promising for the 5G system because of large signal bandwidths such high frequencies can offer. By using high gain beamforming antennas, the problem of high propagation loss at high frequencies can be overcome. However, the use of beamforming antennas at such high frequencies requires a significant change in the design of a cellular system. In particular, it requires a significant change in key functions such as cell search, random access, measurement of beams for fast beam adaptation, and various physical control and data channels. In this paper, we propose a new radio frame structure for the future mobile cellular communications system at millimeter wave frequency that addresses such challenges. A testbed was built at Samsung Electronics, Korea, based on the proposed frame structure at 28 GHz with bandwidth of 800 MHz. It attained the downlink (DL) data rate of 7.5 Gbps by delivering four streams of 64 QAM data with code rate of 3/4 to two mobile stations (MSs) located in a close distance to the base station antennas at fixed positions. It also achieved the DL data rate of 1.2 Gbps by delivering single stream of 16 QAM data with code rate of 3/4 to an MS moving at 110 km/h in a single cell of up to 800 m in a line-of-sight environment. Finally, it implemented handover and achieved an average handover interruption time of 21 ms in a three-cell environment, and demonstrated feasibility of mobile cellular communications at millimeter wave frequency.

80 citations

Journal ArticleDOI
TL;DR: In this article, a fiber-optic transport system for next-generation wireless-communication systems utilizing 4 times 4 multiple-input multiple-output (MIMO) orthogonal-frequency-division-multiple-access (OFDMA) technology is presented.
Abstract: We report on a fiber-optic transport system for next-generation wireless-communication systems utilizing 4 times 4 multiple-input multiple-output (MIMO) orthogonal-frequency-division-multiple-access (OFDMA) technology. Our system supports time-division-duplex (TDD)-based wireless signals operating at 3.775 GHz. To accommodate the TDD-based MIMO signals over a single strand of optical fiber, we utilize nine-channel coarse wavelength-division-multiplexed optical channels: one for link delay measurement and TDD control signal transmission, four for downlink, and the others for uplink. The system first measures the propagation delay between the central base station (CBS) and the remote antenna (RA) and sends the result to delay modules to compensate for the delay added by the transmission link. This procedure makes the CBS and RA emit the downstream signals simultaneously into the air and, consequently, helps avoid the performance degradation caused by the propagation delay of the radio-over-fiber system. The system then sends the MIMO signals together with TDD control signals to the RA. Our experimental demonstration is carried out with 1-Gb/s OFDMA signals having pilot, control, and data channels. For downstream, the error vector magnitudes (EVMs) are measured to be < -30 dB after a 3.9-km transmission over conventional single-mode fiber when the antenna output power is set to be 24 dBm. For upstream, the best EVMs are measured to be < -35 dB. Both the downstream and upstream performance is limited by the shot and thermal noise of the receiver when the signal power is low, whereas nonlinear distortions of electrical amplifiers start to degrade the system performance as the signal power increases. We also measure the crosstalk between channels. It is measured to be less than -42 dB for all channels, which is found to be caused by board-to-board interference at the RA.

45 citations

Patent
30 Nov 2004
TL;DR: In this paper, a method of establishing a path between routers in a system-on-chip (SoC) of n×n mesh topology structure having a plurality of IPs each with a unique address and routers corresponding to each of the IPs respectively, including: receiving a routing packet including a hop counter, and updating address information and information of a stored routing table; established a path to at least one neighboring router using the updated routing table upon a request to establish the path; and delivering data by using the established path.
Abstract: A method of establishing a path between routers in a system-on-chip (SoC) of n×n mesh topology structure having a plurality of intellectual properties (IPs) each with a unique address and routers corresponding to each of the IPs respectively, including: receiving a routing packet including a hop counter, and updating address information and information of a stored routing table; establishing a path to at least one neighboring router using the updated routing table upon a request to establish the path; and delivering data by using the established path.

27 citations

Patent
09 Dec 2004
TL;DR: In this article, an orthogonal code having orthogonality is assigned according to the direction of transmission of each data (that is, output port), and an output port where the data is transmitted is determined.
Abstract: An apparatus and a method for setting a routing path in System-on-a-Chip (SoC) having an n×n net topology-based structure comprising a plurality of intellectual properties (IPs), each with a unique address, and a plurality of switches forming one-to-one correspondence to the IPs, to transmit and receive data between the IPs by using at least one of the switches. Accordingly, an orthogonal code having orthogonality is assigned according to the direction of transmission of each data (that is, output port). Then, an output port where the data is transmitted is determined, and the data is spread based on an orthogonal code assigned to the output ports of the at least one of the switches.

26 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Journal ArticleDOI
TL;DR: This survey makes an exhaustive review of wireless evolution toward 5G networks, including the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN, and underlying novel mm-wave physical layer technologies.
Abstract: The vision of next generation 5G wireless communications lies in providing very high data rates (typically of Gbps order), extremely low latency, manifold increase in base station capacity, and significant improvement in users’ perceived quality of service (QoS), compared to current 4G LTE networks. Ever increasing proliferation of smart devices, introduction of new emerging multimedia applications, together with an exponential rise in wireless data (multimedia) demand and usage is already creating a significant burden on existing cellular networks. 5G wireless systems, with improved data rates, capacity, latency, and QoS are expected to be the panacea of most of the current cellular networks’ problems. In this survey, we make an exhaustive review of wireless evolution toward 5G networks. We first discuss the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN. Subsequently, we make an in-depth survey of underlying novel mm-wave physical layer technologies, encompassing new channel model estimation, directional antenna design, beamforming algorithms, and massive MIMO technologies. Next, the details of MAC layer protocols and multiplexing schemes needed to efficiently support this new physical layer are discussed. We also look into the killer applications, considered as the major driving force behind 5G. In order to understand the improved user experience, we provide highlights of new QoS, QoE, and SON features associated with the 5G evolution. For alleviating the increased network energy consumption and operating expenditure, we make a detail review on energy awareness and cost efficiency. As understanding the current status of 5G implementation is important for its eventual commercialization, we also discuss relevant field trials, drive tests, and simulation experiments. Finally, we point out major existing research issues and identify possible future research directions.

2,624 citations

Journal ArticleDOI
TL;DR: This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.
Abstract: Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless communication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.

2,380 citations

Journal ArticleDOI
TL;DR: A general probable 5G cellular network architecture is proposed, which shows that D2D, small cell access points, network cloud, and the Internet of Things can be a part of 5G Cellular network architecture.
Abstract: In the near future, i.e., beyond 4G, some of the prime objectives or demands that need to be addressed are increased capacity, improved data rate, decreased latency, and better quality of service. To meet these demands, drastic improvements need to be made in cellular network architecture. This paper presents the results of a detailed survey on the fifth generation (5G) cellular network architecture and some of the key emerging technologies that are helpful in improving the architecture and meeting the demands of users. In this detailed survey, the prime focus is on the 5G cellular network architecture, massive multiple input multiple output technology, and device-to-device communication (D2D). Along with this, some of the emerging technologies that are addressed in this paper include interference management, spectrum sharing with cognitive radio, ultra-dense networks, multi-radio access technology association, full duplex radios, millimeter wave solutions for 5G cellular networks, and cloud technologies for 5G radio access networks and software defined networks. In this paper, a general probable 5G cellular network architecture is proposed, which shows that D2D, small cell access points, network cloud, and the Internet of Things can be a part of 5G cellular network architecture. A detailed survey is included regarding current research projects being conducted in different countries by research groups and institutions that are working on 5G technologies.

1,899 citations

Journal ArticleDOI
TL;DR: An overview of 5G research, standardization trials, and deployment challenges is provided, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.
Abstract: There is considerable pressure to define the key requirements of 5G, develop 5G standards, and perform technology trials as quickly as possible. Normally, these activities are best done in series but there is a desire to complete these tasks in parallel so that commercial deployments of 5G can begin by 2020. 5G will not be an incremental improvement over its predecessors; it aims to be a revolutionary leap forward in terms of data rates, latency, massive connectivity, network reliability, and energy efficiency. These capabilities are targeted at realizing high-speed connectivity, the Internet of Things, augmented virtual reality, the tactile internet, and so on. The requirements of 5G are expected to be met by new spectrum in the microwave bands (3.3-4.2 GHz), and utilizing large bandwidths available in mm-wave bands, increasing spatial degrees of freedom via large antenna arrays and 3-D MIMO, network densification, and new waveforms that provide scalability and flexibility to meet the varying demands of 5G services. Unlike the one size fits all 4G core networks, the 5G core network must be flexible and adaptable and is expected to simultaneously provide optimized support for the diverse 5G use case categories. In this paper, we provide an overview of 5G research, standardization trials, and deployment challenges. Due to the enormous scope of 5G systems, it is necessary to provide some direction in a tutorial article, and in this overview, the focus is largely user centric, rather than device centric. In addition to surveying the state of play in the area, we identify leading technologies, evaluating their strengths and weaknesses, and outline the key challenges ahead, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.

1,659 citations