scispace - formally typeset
Search or ask a question
Author

Jae Seung Lee

Bio: Jae Seung Lee is an academic researcher from Korea University. The author has contributed to research in topics: Colloidal gold & Nanoparticle. The author has an hindex of 27, co-authored 83 publications receiving 5836 citations. Previous affiliations of Jae Seung Lee include Northwestern University & KAIST.


Papers
More filters
Journal ArticleDOI
TL;DR: A highly selective and sensitive colorimetric detection method for Hg that relies on thymidine–Hg–thymidine coordination chemistry and complementary DNA–Au NPs with deliberately designed T–T mismatches is presented.
Abstract: Mercury is a widespread pollutant with distinct toxicological profiles, and it exists in a variety of different forms (metallic, ionic, and as part of organic and inorganic salts and complexes). Solvated mercuric ion (Hg), one of the most stable inorganic forms of mercury, is a caustic and carcinogenic material with high cellular toxicity. The most common organic source of mercury, methyl mercury, can accumulate in the human body through the food chain and cause serious and permanent damage to the brain with both acute and chronic toxicity. Methyl mercury is generated by microbial biomethylation in aquatic sediments from water-soluble mercuric ion (Hg). Therefore, routine detection of Hg is central to the environmental monitoring of rivers and larger bodies of water and for evaluating the safety of aquatically derived food supplies. Several methods for the detection of Hg, based upon organic fluorophores or chromophores, semiconductor nanocrystals, cyclic voltammetry, polymeric materials, proteins, and microcantilevers, have been developed. Colorimetric methods, in particular, are extremely attractive because they can be easily read out with the naked eye, in some cases at the point of use. Although there are now several chromophoric colorimetric sensors for Hg, all of them are either limited with respect to sensitivity (current limit of detection 1 mm) and selectivity, kinetically unstable, or incompatible with aqueous environments. Recently, DNA-functionalized gold nanoparticles (DNA– Au NPs) have been used in a variety of forms for the detection of proteins, oligonucleotides, certain metal ions, and other small molecules. DNA–Au NPs have high extinction coefficients (3–5 orders of magnitude higher than those of organic dye molecules) and unique distancedependent optical properties that can be chemically programmed through the use of specific DNA interconnects, which allows one, in certain cases, to detect targets of interest through colorimetric means. Moreover, these structures, when hybridized to complementary particles, exhibit extremely sharp melting transitions, which have been used to enhance the selectivity of detection systems based upon them. By using such an approach, one can typically detect nucleic acid targets in the low nanomolar to high picomolar target concentration range in colorimetric format. The ability to use such particles to detect Hg in the nanomolar concentration range in colorimetric format would be a significant advance, especially when one considers that commercial systems for detecting Hg rely on cumbersome inductively coupled plasma approaches that are not suitable for point-of-use applications. Herein, we present a highly selective and sensitive colorimetric detection method for Hg that relies on thymidine–Hg–thymidine coordination chemistry and complementary DNA–Au NPs with deliberately designed T–T mismatches. When two complementary DNA–Au NPs are combined, they form DNA-linked aggregates that can dissociate reversibly with a concomitant purple-to-red color change. 28] For our novel colorimetric Hg assay, however, we prepared two types of Au NPs (designated as probe A and probe B, see the Supporting Information), each functionalized with different thiolated-DNA sequences (probe A: 5’HS-C10-A10-T-A103’, probe B: 5’HS-C10-T10-T-T103’), which are complementary except for a single thymidine–thymidine mismatch (shown in bold; Scheme 1). Importantly, these particles also form stable aggregates and exhibit the characteristic sharp melting transitions (full width at half maximum< 1 8C) associated with aggregates formed from perfectly complementary particles, but with a lower melting temperature Tm. [17, 18] Since it is known that Hg will coordinate selectively to the bases that make up a T–T mismatch, we hypothesized that Hg would

1,295 citations

Journal ArticleDOI
TL;DR: A highly sensitive and selective colorimetric detection method for cysteine based upon oligonucleotide-functionalized gold nanoparticle probes that contain strategically placed thymidine-thymidine (T-T) mismatches complexed with Hg2+.
Abstract: We report the development of a highly sensitive and selective colorimetric detection method for cysteine based upon oligonucleotide-functionalized gold nanoparticle probes that contain strategically placed thymidine-thymidine (T-T) mismatches complexed with Hg2+. This assay relies upon the distance-dependent optical properties of gold nanoparticles, the sharp melting transition of oligonucleotide-linked nanoparticle aggregates, and the very selective coordination of Hg2+ with cysteine. The concentration of cysteine can be determined by monitoring with the naked eye or a UV-vis spectrometer the temperature at which the purple-to-red color change associated with aggregate dissociation takes place. This assay does not utilize organic cosolvents, enzymatic reactions, light-sensitive dye molecules, lengthy protocols, or sophisticated instrumentation thereby overcoming some of the limitations of more conventional methods.

463 citations

Journal ArticleDOI
TL;DR: This work is an important step toward using silver nanoparticle-oligonucleotide conjugates for a variety of purposes, including molecular diagnostic labels, synthons in programmable materials synthesis approaches, and functional components for nanoelectronic and plasmonic devices.
Abstract: We report a new strategy for preparing silver nanoparticle−oligonucleotide conjugates that are based upon DNA with cyclic disulfide-anchoring groups. These particles are extremely stable and can withstand NaCl concentrations up to 1.0 M. When silver nanoparticles functionalized with complementary sequences are combined, they assemble to form DNA-linked nanoparticle networks. This assembly process is reversible with heating and is associated with a red shifting of the particle surface plasmon resonance and a concomitant color change from yellow to pale red. Analogous to the oligonucleotide-functionalized gold nanoparticles, these particles also exhibit highly cooperative binding properties with extremely sharp melting transitions. This work is an important step toward using silver nanoparticle−oligonucleotide conjugates for a variety of purposes, including molecular diagnostic labels, synthons in programmable materials synthesis approaches, and functional components for nanoelectronic and plasmonic devices.

454 citations

Journal ArticleDOI
TL;DR: The chemistry for preparing a universal probe and the appropriate nano- and microparticle labels that can be used to do highly selective multiplexed detection of three protein cancer markers at low-femtomolar concentration in buffer and serum media are developed.
Abstract: We have developed the chemistry for preparing a universal probe and the appropriate nano- and microparticle labels that can be used to do highly selective multiplexed detection of three protein cancer markers at low-femtomolar concentration in buffer and serum media. The approach relies on a new multiplexed version of the biobarcode amplification method and offers new opportunities for studying multiple protein markers in a single sample. This could lead to new forms of disease diagnosis and monitoring disease recurrence in a variety of settings.

429 citations

Journal ArticleDOI
TL;DR: A previously undescribed gold nanoparticle bio-barcode assay probe for the detection of prostate specific antigen (PSA) at 330 fg/mL, automation of the assay, and the results of a clinical pilot study designed to assess the ability to detect PSA in the serum of 18 men who have undergone radical prostatectomy for prostate cancer are reported.
Abstract: We report the development of a previously undescribed gold nanoparticle bio-barcode assay probe for the detection of prostate specific antigen (PSA) at 330 fg/mL, automation of the assay, and the results of a clinical pilot study designed to assess the ability of the assay to detect PSA in the serum of 18 men who have undergone radical prostatectomy for prostate cancer. Due to a lack of sensitivity, available PSA immunoassays are often not capable of detecting PSA in the serum of men after radical prostatectomy. This new bio-barcode PSA assay is ≈300 times more sensitive than commercial immunoassays. Significantly, with the barcode assay, every patient in this cohort had a measurable serum PSA level after radical prostatectomy. Patients were separated into categories based on PSA levels as a function of time. One group of patients showed low levels of PSA with no significant increase with time and did not recur. Others showed, at some point postprostatectomy, rising PSA levels. The majority recurred. Therefore, this new ultrasensitive assay points to significant possible outcomes: (i) The ability to tell patients, who have undetectable PSA levels with conventional assays, but detectable and nonrising levels with the barcode assay, that their cancer will not recur. (ii) The ability to assign recurrence earlier because of the ability to measure increasing levels of PSA before conventional tools can make such assignments. (iii) The ability to use PSA levels that are not detectable with conventional assays to follow the response of patients to adjuvant or salvage therapies.

384 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems.
Abstract: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems. Substantial progress in the size and shape control of magnetic nanoparticles has been made by developing methods such as co-precipitation, thermal decomposition and/or reduction, micelle synthesis, and hydrothermal synthesis. A major challenge still is protection against corrosion, and therefore suitable protection strategies will be emphasized, for example, surfactant/polymer coating, silica coating and carbon coating of magnetic nanoparticles or embedding them in a matrix/support. Properly protected magnetic nanoparticles can be used as building blocks for the fabrication of various functional systems, and their application in catalysis and biotechnology will be briefly reviewed. Finally, some future trends and perspectives in these research areas will be outlined.

5,956 citations

Journal ArticleDOI
TL;DR: The advent of AuNP as a sensory element provided a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.
Abstract: Detection of chemical and biological agents plays a fundamental role in biomedical, forensic and environmental sciences1–4 as well as in anti bioterrorism applications.5–7 The development of highly sensitive, cost effective, miniature sensors is therefore in high demand which requires advanced technology coupled with fundamental knowledge in chemistry, biology and material sciences.8–13 In general, sensors feature two functional components: a recognition element to provide selective/specific binding with the target analytes and a transducer component for signaling the binding event. An efficient sensor relies heavily on these two essential components for the recognition process in terms of response time, signal to noise (S/N) ratio, selectivity and limits of detection (LOD).14,15 Therefore, designing sensors with higher efficacy depends on the development of novel materials to improve both the recognition and transduction processes. Nanomaterials feature unique physicochemical properties that can be of great utility in creating new recognition and transduction processes for chemical and biological sensors15–27 as well as improving the S/N ratio by miniaturization of the sensor elements.28 Gold nanoparticles (AuNPs) possess distinct physical and chemical attributes that make them excellent scaffolds for the fabrication of novel chemical and biological sensors (Figure 1).29–36 First, AuNPs can be synthesized in a straightforward manner and can be made highly stable. Second, they possess unique optoelectronic properties. Third, they provide high surface-to-volume ratio with excellent biocompatibility using appropriate ligands.30 Fourth, these properties of AuNPs can be readily tuned varying their size, shape and the surrounding chemical environment. For example, the binding event between recognition element and the analyte can alter physicochemical properties of transducer AuNPs, such as plasmon resonance absorption, conductivity, redox behavior, etc. that in turn can generate a detectable response signal. Finally, AuNPs offer a suitable platform for multi-functionalization with a wide range of organic or biological ligands for the selective binding and detection of small molecules and biological targets.30–32,36 Each of these attributes of AuNPs has allowed researchers to develop novel sensing strategies with improved sensitivity, stability and selectivity. In the last decade of research, the advent of AuNP as a sensory element provided us a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.37 Figure 1 Physical properties of AuNPs and schematic illustration of an AuNP-based detection system. In this current review, we have highlighted the several synthetic routes and properties of AuNPs that make them excellent probes for different sensing strategies. Furthermore, we will discuss various sensing strategies and major advances in the last two decades of research utilizing AuNPs in the detection of variety of target analytes including metal ions, organic molecules, proteins, nucleic acids, and microorganisms.

3,879 citations

Journal ArticleDOI
TL;DR: In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision through a strong interaction between incident light and free electrons in the nanostructure.
Abstract: Coinage metals, such as Au, Ag, and Cu, have been important materials throughout history.1 While in ancient cultures they were admired primarily for their ability to reflect light, their applications have become far more sophisticated with our increased understanding and control of the atomic world. Today, these metals are widely used in electronics, catalysis, and as structural materials, but when they are fashioned into structures with nanometer-sized dimensions, they also become enablers for a completely different set of applications that involve light. These new applications go far beyond merely reflecting light, and have renewed our interest in maneuvering the interactions between metals and light in a field known as plasmonics.2–6 In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision. These applications are made possible through a strong interaction between incident light and free electrons in the nanostructures. With a tight control over the nanostructures in terms of size and shape, light can be effectively manipulated and controlled with unprecedented accuracy.3,7 While many new technologies stand to be realized from plasmonics, with notable examples including superlenses,8 invisible cloaks,9 and quantum computing,10,11 conventional technologies like microprocessors and photovoltaic devices could also be made significantly faster and more efficient with the integration of plasmonic nanostructures.12–15 Of the metals, Ag has probably played the most important role in the development of plasmonics, and its unique properties make it well-suited for most of the next-generation plasmonic technologies.16–18 1.1. What is Plasmonics? Plasmonics is related to the localization, guiding, and manipulation of electromagnetic waves beyond the diffraction limit and down to the nanometer length scale.4,6 The key component of plasmonics is a metal, because it supports surface plasmon polariton modes (indicated as surface plasmons or SPs throughout this review), which are electromagnetic waves coupled to the collective oscillations of free electrons in the metal. While there are a rich variety of plasmonic metal nanostructures, they can be differentiated based on the plasmonic modes they support: localized surface plasmons (LSPs) or propagating surface plasmons (PSPs).5,19 In LSPs, the time-varying electric field associated with the light (Eo) exerts a force on the gas of negatively charged electrons in the conduction band of the metal and drives them to oscillate collectively. At a certain excitation frequency (w), this oscillation will be in resonance with the incident light, resulting in a strong oscillation of the surface electrons, commonly known as a localized surface plasmon resonance (LSPR) mode.20 This phenomenon is illustrated in Figure 1A. Structures that support LSPRs experience a uniform Eo when excited by light as their dimensions are much smaller than the wavelength of the light. Figure 1 Schematic illustration of the two types of plasmonic nanostructures discussed in this article as excited by the electric field (Eo) of incident light with wavevector (k). In (A) the nanostructure is smaller than the wavelength of light and the free electrons ... In contrast, PSPs are supported by structures that have at least one dimension that approaches the excitation wavelength, as shown in Figure 1B.4 In this case, the Eo is not uniform across the structure and other effects must be considered. In such a structure, like a nanowire for example, SPs propagate back and forth between the ends of the structure. This can be described as a Fabry-Perot resonator with resonance condition l=nλsp, where l is the length of the nanowire, n is an integer, and λsp is the wavelength of the PSP mode.21,22 Reflection from the ends of the structure must also be considered, which can change the phase and resonant length. Propagation lengths can be in the tens of micrometers (for nanowires) and the PSP waves can be manipulated by controlling the geometrical parameters of the structure.23

2,421 citations

Journal ArticleDOI
TL;DR: This work has shown that coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface can be associated with surface plasmons, which have potential applications in miniaturized optical devices, sensors, and photonic circuits.
Abstract: Surface plasmons (SPs) are coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface. The growing field of research on such light -metal interactions is known as ‘plasmonics’. 1-3 This branch of research has attracted much attention due to its potential applications in miniaturized optical devices, sensors, and photonic circuits as well as in medical diagnostics and therapeutics. 4-8

2,284 citations