scispace - formally typeset
Search or ask a question
Author

Jaeho Kim

Other affiliations: Yonsei University, Samsung
Bio: Jaeho Kim is an academic researcher from Sejong University. The author has contributed to research in topics: Wireless sensor network & Interoperability. The author has an hindex of 19, co-authored 71 publications receiving 1511 citations. Previous affiliations of Jaeho Kim include Yonsei University & Samsung.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes an M2M service platform (M2SP) architecture and its functionalities, and presents the M1M ecosystem with this platform and discusses the issues and challenges of enabling technologies and standardization activities.
Abstract: Machine-to-Machine (M2M) refers to technologies with various applications. In order to provide the vision and goals of M2M, an M2M ecosystem with a service platform must be established by the key players in industrial domains so as to substantially reduce development costs and improve time to market of M2M devices and services. The service platform must be supported by M2M enabling technologies and standardization. In this paper, we present a survey of existing M2M service platforms and explore the various research issues and challenges involved in enabling an M2M service platform. We first classify M2M nodes according to their characteristics and required functions, and we then highlight the features of M2M traffic. With these in mind, we discuss the necessity of M2M platforms. By comparing and analyzing the existing approaches and solutions of M2M platforms, we identify the requirements and functionalities of the ideal M2M service platform. Based on these, we propose an M2M service platform (M2SP) architecture and its functionalities, and present the M2M ecosystem with this platform. Different application scenarios are given to illustrate the interaction between the components of the proposed platform. In addition, we discuss the issues and challenges of enabling technologies and standardization activities, and outline future research directions for the M2M network.

299 citations

Proceedings ArticleDOI
01 Nov 2015
TL;DR: A connected farm based on IoT systems is presented, which aims to provide smart farming systems for end users and will show the power of IoT as a disruptive technology helping across multi industries including agriculture.
Abstract: Agriculture has been one of the most important industries in human history since it provides humans with absolutely indispensable resources such as food, fiber, and energy. The agriculture industry could be further developed by employing new technologies, in particular, the Internet of Things (IoT). In this paper, we present a connected farm based on IoT systems, which aims to provide smart farming systems for end users. A detailed design and implementation for connected farms are illustrated, and its advantages are explained with service scenarios compared to previous smart farms. We hope this work will show the power of IoT as a disruptive technology helping across multi industries including agriculture.

132 citations

Proceedings ArticleDOI
06 Mar 2014
TL;DR: It is expected that the open IoT service framework proposed will play an important role in the widespread adoption of the Internet of Things in the authors' everyday life, enhancing their quality of life with a large number of innovative applications and services, but also offering endless opportunities to all of the stakeholders in the world of information and communication technologies.
Abstract: The Internet of Things (IoT) has been a hot topic for the future of computing and communication It will not only have a broad impact on our everyday life in the near future, but also create a new ecosystem involving a wide array of players such as device developers, service providers, software developers, network operators, and service users In this paper, we present an open service framework for the Internet of Things, facilitating entrance into the IoT-related mass market, and establishing a global IoT ecosystem with the worldwide use of IoT devices and softwares We expect that the open IoT service framework we proposed will play an important role in the widespread adoption of the Internet of Things in our everyday life, enhancing our quality of life with a large number of innovative applications and services, but also offering endless opportunities to all of the stakeholders in the world of information and communication technologies

104 citations

Journal ArticleDOI
TL;DR: This interworking experiment clearly proves that global IoT standards specifications can foster implementations of a service layer that enables services and interoperability between devices/device networks and cloud-based applications.
Abstract: The Internet-of-Things (IoT) provides a great opportunity to many vertical industries because IoT interconnects various devices such as sensors and actuators and collects/processes data from them in order to improve services and reduce costs. As there exists many IoT technologies in the market, global standards and interworking mechanisms are critical to the success of the IoT. This article introduces standardized interworking interfaces and procedures based on oneM2M global standards, and tests them through use cases involving multiple IoT service platforms. The interworking involves smart city applications/services running on multiple IoT service layer platforms interoperating with each other. The main purpose of the interworking experiment is to show how machine-to-machine (M2M)/IoT service providers are using oneM2M compliant service layer platforms to deliver services more efficiently across multiple technology domains such as smart city. Because the deployment configurations of this interworking experiment span multiple domains, and the IoT devices and platforms are from different companies, we believe that this interworking experiment clearly proves that global IoT standards specifications can foster implementations of a service layer that enables services and interoperability between devices/device networks and cloudbased applications.

91 citations

Journal ArticleDOI
19 Jan 2015-Sensors
TL;DR: This paper proposes an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city, and addresses three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources.
Abstract: The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability.

77 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey makes an exhaustive review of wireless evolution toward 5G networks, including the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN, and underlying novel mm-wave physical layer technologies.
Abstract: The vision of next generation 5G wireless communications lies in providing very high data rates (typically of Gbps order), extremely low latency, manifold increase in base station capacity, and significant improvement in users’ perceived quality of service (QoS), compared to current 4G LTE networks. Ever increasing proliferation of smart devices, introduction of new emerging multimedia applications, together with an exponential rise in wireless data (multimedia) demand and usage is already creating a significant burden on existing cellular networks. 5G wireless systems, with improved data rates, capacity, latency, and QoS are expected to be the panacea of most of the current cellular networks’ problems. In this survey, we make an exhaustive review of wireless evolution toward 5G networks. We first discuss the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN. Subsequently, we make an in-depth survey of underlying novel mm-wave physical layer technologies, encompassing new channel model estimation, directional antenna design, beamforming algorithms, and massive MIMO technologies. Next, the details of MAC layer protocols and multiplexing schemes needed to efficiently support this new physical layer are discussed. We also look into the killer applications, considered as the major driving force behind 5G. In order to understand the improved user experience, we provide highlights of new QoS, QoE, and SON features associated with the 5G evolution. For alleviating the increased network energy consumption and operating expenditure, we make a detail review on energy awareness and cost efficiency. As understanding the current status of 5G implementation is important for its eventual commercialization, we also discuss relevant field trials, drive tests, and simulation experiments. Finally, we point out major existing research issues and identify possible future research directions.

2,624 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications, and explores various key design issues according to the network types, i.e., single-hop networks, multiantenna networks, relay networks, and cognitive radio networks.
Abstract: Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next-generation wireless networks As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service requirements In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, which is referred to as RF energy harvesting networks (RF-EHNs) First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations and review the communication protocols specially designed for RF-EHNs We also explore various key design issues in the development of RF-EHNs according to the network types, ie, single-hop networks, multiantenna networks, relay networks, and cognitive radio networks Finally, we envision some open research directions

2,352 citations

Journal ArticleDOI
TL;DR: A stochastic transmission model is combined with data on cases of coronavirus disease 2019 (COVID-19) in Wuhan and international cases that originated inWuhan to estimate how transmission had varied over time during January, 2020, and February, 2020.
Abstract: Summary Background An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to 95 333 confirmed cases as of March 5, 2020. Understanding the early transmission dynamics of the infection and evaluating the effectiveness of control measures is crucial for assessing the potential for sustained transmission to occur in new areas. Combining a mathematical model of severe SARS-CoV-2 transmission with four datasets from within and outside Wuhan, we estimated how transmission in Wuhan varied between December, 2019, and February, 2020. We used these estimates to assess the potential for sustained human-to-human transmission to occur in locations outside Wuhan if cases were introduced. Methods We combined a stochastic transmission model with data on cases of coronavirus disease 2019 (COVID-19) in Wuhan and international cases that originated in Wuhan to estimate how transmission had varied over time during January, 2020, and February, 2020. Based on these estimates, we then calculated the probability that newly introduced cases might generate outbreaks in other areas. To estimate the early dynamics of transmission in Wuhan, we fitted a stochastic transmission dynamic model to multiple publicly available datasets on cases in Wuhan and internationally exported cases from Wuhan. The four datasets we fitted to were: daily number of new internationally exported cases (or lack thereof), by date of onset, as of Jan 26, 2020; daily number of new cases in Wuhan with no market exposure, by date of onset, between Dec 1, 2019, and Jan 1, 2020; daily number of new cases in China, by date of onset, between Dec 29, 2019, and Jan 23, 2020; and proportion of infected passengers on evacuation flights between Jan 29, 2020, and Feb 4, 2020. We used an additional two datasets for comparison with model outputs: daily number of new exported cases from Wuhan (or lack thereof) in countries with high connectivity to Wuhan (ie, top 20 most at-risk countries), by date of confirmation, as of Feb 10, 2020; and data on new confirmed cases reported in Wuhan between Jan 16, 2020, and Feb 11, 2020. Findings We estimated that the median daily reproduction number (Rt) in Wuhan declined from 2·35 (95% CI 1·15–4·77) 1 week before travel restrictions were introduced on Jan 23, 2020, to 1·05 (0·41–2·39) 1 week after. Based on our estimates of Rt, assuming SARS-like variation, we calculated that in locations with similar transmission potential to Wuhan in early January, once there are at least four independently introduced cases, there is a more than 50% chance the infection will establish within that population. Interpretation Our results show that COVID-19 transmission probably declined in Wuhan during late January, 2020, coinciding with the introduction of travel control measures. As more cases arrive in international locations with similar transmission potential to Wuhan before these control measures, it is likely many chains of transmission will fail to establish initially, but might lead to new outbreaks eventually. Funding Wellcome Trust, Health Data Research UK, Bill & Melinda Gates Foundation, and National Institute for Health Research.

2,300 citations

Journal ArticleDOI
TL;DR: This survey paper summarizes the current state-of-the-art of Internet of Things architectures in various domains systematically and proposes to solve real-life problems by building and deployment of powerful Internet of Nothing notions.

942 citations