scispace - formally typeset
Search or ask a question
Author

Jaeseon Lee

Other affiliations: Purdue University
Bio: Jaeseon Lee is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Heat sink & Heat transfer. The author has an hindex of 13, co-authored 28 publications receiving 1562 citations. Previous affiliations of Jaeseon Lee include Purdue University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors explored the micro-channel cooling benefits of water-based nanofluids containing small concentrations of Al 2 O 3, showing that the high thermal conductivity of nanoparticles is shown to enhance the single-phase heat transfer coefficient, especially for laminar flow.

567 citations

Journal ArticleDOI
TL;DR: In this paper, the second part of a two-part study concerning two-phase flow and heat transfer characteristics of R134a in a micro-channel heat sink incorporated as an evaporator in a refrigeration cycle is presented.

500 citations

Journal ArticleDOI
TL;DR: In this article, a new cooling scheme is proposed where the primary working fluid flowing through a micro-channel heat sink is pre-cooled to low temperature using an indirect refrigeration cooling system.

144 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored the benefits of cooling the device using direct and indirect refrigeration cooling systems and found that the indirect cooling system is far more effective at dissipating high heat fluxes.
Abstract: For a given heat sink thermal resistance and ambient temperature, the temperature of an electronic device rises fairly linearly with increasing device heat flux. This relationship is especially problematic for defense electronics, where heat dissipation is projected to exceed 1000 W/cm2 in the near future. Direct and indirect low-temperature refrigeration cooling facilitate appreciable reduction in the temperature of both coolant and device. This paper explores the benefits of cooling the device using direct and indirect refrigeration cooling systems. In the direct cooling system, a microchannel heat sink serves as an evaporator in a conventional vapor compression cycle using R134a as working fluid. In the indirect cooling system, HFE 7100 is used to cool the heat sink in a primary pumped liquid loop that rejects heat to a secondary refrigeration loop. Two drastically different flow behaviors are observed in these systems. Because of compressor performance constraints, mostly high void fraction two-phase patterns are encountered in the R134a system, dominated by saturated boiling. On the other hand, the indirect refrigeration cooling system facilitates highly subcooled boiling inside the heat sink. Both systems are shown to provide important cooling benefits, but the indirect cooling system is far more effective at dissipating high heat fluxes. Tests with this system yielded cooling heat fluxes as high as 840 W/cm2 without incurring critical heat flux (CHF). Results from both systems are combined to construct an overall map of performance trends relative to mass velocity, subcooling, pressure, and surface tension. Extreme conditions of near-saturated flow, low mass velocity, and low pressure produce ldquomicrordquo behavior, where macrochannel flow pattern maps simply fail to apply, instabilities are prominent, and CHF is quite low. One the other hand, systems with high mass velocity, high subcooling, and high pressure are far more stable and yield very high CHF values; two-phase flow in these systems follows the fluid flow and heat transfer behavior as well as the flow pattern maps of macrochannels.

127 citations

Journal ArticleDOI
TL;DR: In this paper, critical heat flux (CHF) was measured and examined with high-speed video for subcooled flow boiling in micro-channel heat sinks using HFE 7100 as working fluid.

118 citations


Cited by
More filters
01 Jan 1993

2,271 citations

Journal ArticleDOI
TL;DR: It has been found nan ofluids have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional fluids, which can be considered as one of the key parameters for enhanced performances for many of the applications of nanofluids.
Abstract: Nanofluids are potential heat transfer fluids with enhanced thermophysical properties and heat transfer performance can be applied in many devices for better performances (i.e. energy, heat transfer and other performances). In this paper, a comprehensive literature on the applications and challenges of nanofluids have been compiled and reviewed. Latest up to date literatures on the applications and challenges in terms of PhD and Master thesis, journal articles, conference proceedings, reports and web materials have been reviewed and reported. Recent researches have indicated that substitution of conventional coolants by nanofluids appears promising. Specific application of nanofluids in engine cooling, solar water heating, cooling of electronics, cooling of transformer oil, improving diesel generator efficiency, cooling of heat exchanging devices, improving heat transfer efficiency of chillers, domestic refrigerator-freezers, cooling in machining, in nuclear reactor and defense and space have been reviewed and presented. Authors also critically analyzed some of the applications and identified research gaps for further research. Moreover, challenges and future directions of applications of nanofluids have been reviewed and presented in this paper. Based on results available in the literatures, it has been found nanofluids have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional fluids. This can be considered as one of the key parameters for enhanced performances for many of the applications of nanofluids. Because of its superior thermal performances, latest up to date literatures on this property have been summarized and presented in this paper as well. However, few barriers and challenges that have been identified in this review must be addressed carefully before it can be fully implemented in the industrial applications.

1,558 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effects of nanofluids on the performance of solar collectors and solar water heaters from the efficiency, economic and environmental considerations viewpoints, and made some suggestions to use the nanoparticles in different solar thermal systems such as photovoltaic/thermal systems, solar ponds, solar thermoelectric cells, and so on.

1,069 citations

Journal ArticleDOI
TL;DR: A critical synthesis of the variants within the thermophysical properties of nanofluids is presented in this article, where the experimental results for the effective thermal conductivity and viscosity reported by several authors are in disagreement.

943 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the application of various phase change materials based on their thermophysical properties, in particular, the melting point, thermal energy storage density and thermal conductivity of the organic, inorganic and eutectic phases.

813 citations