scispace - formally typeset
Search or ask a question
Author

Jagadeesan Nair

Other affiliations: German Cancer Research Center
Bio: Jagadeesan Nair is an academic researcher from International Agency for Research on Cancer. The author has contributed to research in topics: Lipid peroxidation & Betel. The author has an hindex of 22, co-authored 36 publications receiving 2234 citations. Previous affiliations of Jagadeesan Nair include German Cancer Research Center.

Papers
More filters
Journal ArticleDOI
TL;DR: The formation of etheno adducts may be markers of DNA damage associated with LPO, as demonstrated by reaction of LPO products with nucleic acid bases.
Abstract: Lipid peroxidation (LPO) products are known to interact with DNA, yielding several types of adduct with nucleobases. In this study, we demonstrate the formation of two ethenobase adducts, 1,N6-ethenoadenine and 3,N4-ethenocytosine, by reaction of LPO products with nucleic acid bases. Rat liver microsomes were incubated at 37 degrees C for 30 min in the presence of inducers of LPO [Fe(II) or cumene hydroperoxide] and adenine or cytosine nucleotides or nucleosides, followed by further heating at 80 degrees C for 30 min to complete the reactions. The etheno adducts detected after immunoaffinity chromatography were 1,N6-etheno-cAMP and 1,N6-etheno-2'-deoxyadenosine (HPLC/fluorimetry), 3,N4-etheno-2'-deoxycytidine (competitive radioimmunoassay), and 1,N6-etheno-2'-deoxyadenosine 3'-monophosphate and 3,N4-etheno-2'-deoxycytidine 3'-monophosphate (32P-postlabeling). Incubation of arachidonic acid supplemented with Fe(II) also led to the formation of the 1,N6-etheno adduct from cAMP. LPO intermediates that may be involved are discussed. These data suggest that etheno adducts may be markers of DNA damage associated with LPO.

216 citations

Journal ArticleDOI
TL;DR: The results indicate that N-nitroso compounds could easily be formed in vivo in the oral cavity during chewing or in the stomach after swallowing the quids, and the levels of N- Nitrosamines and alkaloids in betel quid extracts were determined before and after nitrosation at pH 7.1.
Abstract: In order to evaluate exposure of betel quid chewers to N-nitroso compounds, saliva and urine samples were collected from chewers of betel quid with or without tobacco, from tobacco chewers, from cigarette smokers and from people with no such habit, and were analysed for the presence of N-nitrosamines by gas chromatography coupled with Thermal Energy Analyzer and alkaloids derived from betel nut and tobacco by capillary gas chromatography fitted with nitrogen-phosphorous selective detector. The levels of the betel nut-specific nitrosamines, N-nitrosoguvacoline and N-nitrososoguvacine (the latter being detected for the first time in saliva), ranged from 0 to 7.1 and 0 to 30.4 ng/ml, respectively. High levels of tobacco-specific nitrosamines were detected in the saliva of chewers of betel quid with tobacco and in that of chewers of tobacco, ranging from 1.6 to 59.7 (N'-nitrosonornicotine), 1.0 to 51.7 (N'-nitrosoanatabine) and 0 to 2.3 [4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone] ng/ml. Urinary concentrations of certain N-nitrosamino acids, including N-nitrosoproline, were determined as a possible index of exposure to nitroso compounds and their precursors in the study groups: no clear difference was observed. The betel nut-specific alkaloid, arecoline, was present at high levels in the saliva of betel quid chewers with or without tobacco. Nicotine and cotinine were also detected in saliva and urine of chewers of tobacco and of betel quid with tobacco. In order to assess whether N-nitroso compounds are formed in vivo in the oral cavity during chewing or in the stomach after swallowing the quids, the levels of N-nitroso compounds in betel quid extracts were determined before and after nitrosation at pH 7.4 and 2.1. The results indicate that N-nitroso compounds could easily be formed in vivo. The possible role of N-nitroso compounds in the causation of cancer of the upper alimentary tract in betel quid chewers is discussed.

210 citations

Journal ArticleDOI
TL;DR: In vitro studies indicated that these promutagenic DNA lesions could arise from endogenously formed lipid peroxidation products.
Abstract: The etheno-bridged exocyclic DNA adducts 1,N6-ethenodeoxyadenosine (epsilon dA) and 3,N4-ethenodeoxycytine (epsilon dC) can be formed by several structurally diverse carcinogens and mutagens that include vinyl chloride and urethane In order to investigate the occurrence and persistence of these adducts in rodents exposed to such DNA-damaging agents, an ultra-sensitive detection method has been developed It is based on immunoaffinity purification of the etheno adducts and subsequent 32P-postlabelling followed by separation as 5'-monophosphates on polyethyleneimine-cellulose-coated thin-layer plates Normal nucleotides in the DNA samples were quantitated by HPLC Optimal conditions for enzymatic hydrolysis of DNA are described: deoxyuridine 3'-monophosphate was used as internal standard to correct for labelling efficiency of the etheno adducts The method had a detection limit of 25 amol of epsilon dA and epsilon dC for a 50 micrograms DNA sample Using this technique, analysis of liver DNA from humans with unknown exposure revealed the presence of epsilon dA and epsilon dC residues in the range of 0-27 adducts per 10(9) parent bases Liver DNA obtained from untreated mice and rats was also shown to contain similar low but variable levels of these etheno adducts In vitro studies indicated that these promutagenic DNA lesions could arise from endogenously formed lipid peroxidation products

210 citations

Journal Article
TL;DR: Comparisons of the areca nut-related N-nitroso compounds and their precursor alkaloids indicate that 3-(N-nitrosomethylamino)propionaldehyde is the most potent on a molar basis to decrease both survival and thiol content and to cause significant formation of DNA single strand breaks.
Abstract: Because betel quid chewing has been linked to the development of oral cancer, pathobiological effects of an aqueous areca nut extract, four areca nut alkaloids (arecoline, guvacoline, guvacine, and arecaidine), and four nitrosated derivatives [N-nitrosoguvacoline, N-nitrosoguvacine, 3-(N-nitrosomethylamino)propionaldehyde and 3-(N-nitrosomethylamino)propionitrile] have been investigated using cultured human buccal epithelial cells. Areca nut extract in a dose-dependent manner decreases cell survival, vital dye accumulation, and membrane integrity, and it causes formation of both DNA single strand breaks and DNA protein cross-links. Depletion of cellular free low-molecular-weight thiols also occurs, albeit at quite toxic concentrations. Comparisons of the areca nut-related N-nitroso compounds and their precursor alkaloids, at concentrations up to 5 mM, indicate that 3-(N-nitrosomethylamino)propionaldehyde is the most potent on a molar basis to decrease both survival and thiol content and to cause significant formation of DNA single strand breaks. Arecoline, guvacoline, or N-nitrosoguvacoline decreases survival and cellular thiols, whereas arecaidine, guvacine, N-nitrosoguvacine, and 3-(N-nitrosomethylamino)propionitrile have only minor effects on these variables. Taken together, the present studies indicate that aqueous extract and, in particular, one N-nitroso compound related to areca nut, i.e., 3-(N-nitrosomethylamino)propionaldehyde, are highly cytotoxic and genotoxic to cultured human buccal epithelial cells, of potential importance in the induction of tumors in betel quid chewers.

177 citations

Journal ArticleDOI
TL;DR: In this article, the formation, detection, and role in carcinogenesis of Ethenobases in Dna were discussed. But they did not consider the role of the Etheno-cell.
Abstract: (1994). Formation, Detection, and Role In Carcinogenesis of Ethenobases in Dna. Drug Metabolism Reviews: Vol. 26, No. 1-2, pp. 349-371.

159 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Methods used to trap RS, including spin trapping and aromatic hydroxylation, are critically examined, with a particular emphasis on those methods applicable to human studies and methods used to detect RS in cell culture.
Abstract: Free radicals and other reactive species (RS) are thought to play an important role in many human diseases. Establishing their precise role requires the ability to measure them and the oxidative damage that they cause. This article first reviews what is meant by the terms free radical, RS, antioxidant, oxidative damage and oxidative stress. It then critically examines methods used to trap RS, including spin trapping and aromatic hydroxylation, with a particular emphasis on those methods applicable to human studies. Methods used to measure oxidative damage to DNA, lipids and proteins and methods used to detect RS in cell culture, especially the various fluorescent ‘probes' of RS, are also critically reviewed. The emphasis throughout is on the caution that is needed in applying these methods in view of possible errors and artifacts in interpreting the results. Keywords: Cell culture, free radical, reactive species, antioxidant, oxidative stress, oxidative damage, fluorescent probe, lipid peroxidation, superoxide Introduction Free radicals and other ‘reactive oxygen (ROS)/nitrogen/chlorine species' (for an explanation of these terms see Table 1) are widely believed to contribute to the development of several age-related diseases, and perhaps, even to the aging process itself (Halliwell & Gutteridge, 1999; Sohal et al., 2002) by causing ‘oxidative stress' and ‘oxidative damage' (terms explained in Table 2). For example, many studies have shown increased oxidative damage to all the major classes of biomolecules in the brains of Alzheimer's patients (Halliwell, 2001; Butterfield, 2002; Liu et al., 2003). Other diseases in which oxidative damage has been implicated include cancer, atherosclerosis, other neurodegenerative diseases and diabetes (Hagen et al., 1994; Chowienczyk et al., 2000; Halliwell, 2000a, 2001, 2002a, 2002b; Parthasarathy et al., 2000). If oxidative damage contributes significantly to disease pathology (Table 3 lists the criteria needed to establish this), then actions that decrease it should be therapeutically beneficial (Halliwell, 2001; Lee et al., 2002a; Liu et al., 2003). If the oxidative damage is involved in the origin of a disease, then successful antioxidant treatment should delay or prevent the onset of that disease (Halliwell, 1991, 2002a, 2002b; Galli et al., 2002; Steinberg & Witztum, 2002). To establish the role of oxidative damage (Table 3), it is therefore essential to be able to measure it accurately. For example, the failure of interventions with antioxidants such as vitamin E, β-carotene or ascorbate to decrease disease incidence in several human intervention trials may have simply been due to the failure of these compounds to decrease oxidative damage in the subjects tested (Halliwell, 1999a, 2000c; Levine et al., 2001; Meagher et al., 2001). In this review, we will examine the methods available to measure reactive species (RS) and oxidative damage, with a particular emphasis on those applicable to human studies. Table 1 Nomenclature of reactive species Table 2 Some key definitions Table 3 Criteria for implicating RS as a significant mechanism of tissue injury in human disease Measuring RS in vivo: basic principles Some fascinating techniques such as L-band electron spin resonance (ESR) with nitroxyl probes and magnetic resonance imaging spin trapping are under development to measure RS directly in whole animals (e.g. Berliner et al., 2001; Han et al., 2001; Utsumi & Yamada, 2003), but no probes are currently suitable for human use. Most RS persist for only a short time in vivo and cannot be measured directly. There are a few exceptions: examples include H2O2 (discussed below), and perhaps, NO•, in the sense that serum levels of NO2− have been claimed to measure vascular endothelial NO• synthesis (Kelm et al., 1999), despite the fact that NO2− is quickly oxidized to NO3− in vivo (Kelm et al., 1999; Oldreive & Rice-Evans, 2001). Essentially, there are two approaches to detecting transient RS: attempting to trap these species and measure the levels of the trapped molecules and measuring the levels of the damage done by RS, that is, the amount of oxidative damage. Sometimes other approaches are used. They include measurements of erythrocyte antioxidant defences and of total antioxidant activity of body fluids; falls in these parameters are often taken as evidence of oxidative stress. Erythrocytes cannot synthesize proteins, however, and their antioxidant enzyme levels may drop as they ‘age' in the circulation (Denton et al., 1975). Thus changes in their levels are more likely to reflect changes in the rates of red blood cell turnover: if this slows down, the circulating erythrocytes will be older on average and so levels of antioxidant enzymes in them will appear to fall. Vice versa, if an intervention accelerates red cell removal or increases erythropoiesis, levels of antioxidants in red cells will seem to rise. Hence, such data should be interpreted with caution. Depending on the method that is used to measure it, the plasma or serum ‘total antioxidant capacity' (TAC) usually involves major contributions from urate, ascorbate and sometimes albumin −SH groups (Benzie & Strain, 1996; Halliwell & Gutteridge, 1999; Prior & Cao, 1999; Rice-Evans, 2000; Bartosz, 2003), although different methods measure different things (Schlesier et al., 2002; Bartosz, 2003). Thus, for example, if plasma albumin levels fall, TAC will fall. If urate levels rise, TAC will rise. The multiple changes in blood chemistry that occur in sick people mean that TAC changes should be interpreted with caution. TAC is also influenced by diet, often because consumption of certain foods may produce changes in plasma ascorbate and/or urate levels (Halliwell, 2003b).

2,239 citations

Journal ArticleDOI
TL;DR: The levels of oxidative DNA damage reported in many human tissues or in animal models of carcinogenesis exceed the levels of lesions induced by exposure to exogenous carcinogenic compounds, and it seems likely that oxidativeDNA damage is important in the etiology of many human cancers.
Abstract: A major development of carcinogenesis research in the past 20 years has been the discovery of significant levels of DNA damage arising from endogenous cellular sources. Dramatic improvements in analytical chemistry have provided sensitive and specific methodology for identification and quantitation of DNA adducts. Application of these techniques to the analysis of nuclear DNA from human tissues has debunked the notion that the human genome is pristine in the absence of exposure to environmental carcinogens. Much endogenous DNA damage arises from intermediates of oxygen reduction that either attack the bases or the deoxyribosyl backbone of DNA. Alternatively, oxygen radicals can attack other cellular components such as lipids to generate reactive intermediates that couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations that are commonly observed in mutated oncogenes and tumor suppressor genes. Their mutagenicity is mitigated by repair via base excision and nucleotide excision pathways. The levels of oxidative DNA damage reported in many human tissues or in animal models of carcinogenesis exceed the levels of lesions induced by exposure to exogenous carcinogenic compounds. Thus, it seems likely that oxidative DNA damage is important in the etiology of many human cancers. This review highlights some of the major accomplishments in the study of oxidative DNA damage and its role in carcinogenesis. It also identifies controversies that need to be resolved. Unraveling the contributions to tumorigenesis of DNA damage from endogenous and exogenous sources represents a major challenge for the future.

1,825 citations

Journal ArticleDOI
TL;DR: The effects of tea and green tea catechins on biomarker of oxidative stress, especially oxidative DNA damage, appear very promising in animal models, but data on biomarkers of in vivo oxidative stress in humans are limited.
Abstract: Increasing interest in the health benefits of tea has led to the inclusion of tea extracts in dietary supplements and functional foods. However, epidemiologic evidence regarding the effects of tea consumption on cancer and cardiovascular disease risk is conflicting. While tea contains a number of bioactive chemicals, it is particularly rich in catechins, of which epigallocatechin gallate (EGCG) is the most abundant. Catechins and their derivatives are thought to contribute to the beneficial effects ascribed to tea. Tea catechins and polyphenols are effective scavengers of reactive oxygen species in vitro and may also function indirectly as antioxidants through their effects on transcription factors and enzyme activities. The fact that catechins are rapidly and extensively metabolized emphasizes the importance of demonstrating their antioxidant activity in vivo. In humans, modest transient increases in plasma antioxidant capacity have been demonstrated following the consumption of tea and green tea catechins. The effects of tea and green tea catechins on biomarkers of oxidative stress, especially oxidative DNA damage, appear very promising in animal models, but data on biomarkers of in vivo oxidative stress in humans are limited. Larger human studies examining the effects of tea and tea catechin intake on biomarkers of oxidative damage to lipids, proteins, and DNA are needed.

1,688 citations

Journal ArticleDOI
TL;DR: Understanding the association between chronic inflammation and cancer provides insights into the molecular mechanisms involved and highlights the interaction between nitric oxide and p53 as a crucial pathway in inflammatory-mediated carcinogenesis.
Abstract: Free radicals are ubiquitous in our body and are generated by normal physiological processes, including aerobic metabolism and inflammatory responses, to eliminate invading pathogenic microorganisms. Because free radicals can also inflict cellular damage, several defences have evolved both to protect our cells from radicals--such as antioxidant scavengers and enzymes--and to repair DNA damage. Understanding the association between chronic inflammation and cancer provides insights into the molecular mechanisms involved. In particular, we highlight the interaction between nitric oxide and p53 as a crucial pathway in inflammatory-mediated carcinogenesis.

1,619 citations

Journal ArticleDOI
TL;DR: It is time to rethink the design of in vitro and in vivo studies, so that these issues are carefully considered, and the length of human intervention studies should be increased, to more closely reflect the long-term dietary consumption of polyphenols.

1,409 citations