scispace - formally typeset
Search or ask a question
Author

Jagadeesh Bayry

Bio: Jagadeesh Bayry is an academic researcher from French Institute of Health and Medical Research. The author has contributed to research in topics: Immune system & Antibody. The author has an hindex of 57, co-authored 303 publications receiving 11808 citations. Previous affiliations of Jagadeesh Bayry include Indian Veterinary Research Institute & University of Oxford.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
27 Aug 2009-Nature
TL;DR: It is shown that the surface layer on the dormant conidia masks their recognition by the immune system and hence prevents immune response, and also immunologically silences airborne moulds.
Abstract: The air we breathe is filled with thousands of fungal spores (conidia) per cubic metre, which in certain composting environments can easily exceed 10(9) per cubic metre. They originate from more than a hundred fungal species belonging mainly to the genera Cladosporium, Penicillium, Alternaria and Aspergillus. Although these conidia contain many antigens and allergens, it is not known why airborne fungal microflora do not activate the host innate immune cells continuously and do not induce detrimental inflammatory responses following their inhalation. Here we show that the surface layer on the dormant conidia masks their recognition by the immune system and hence prevents immune response. To explore this, we used several fungal members of the airborne microflora, including the human opportunistic fungal pathogen Aspergillus fumigatus, in in vitro assays with dendritic cells and alveolar macrophages and in in vivo murine experiments. In A. fumigatus, this surface 'rodlet layer' is composed of hydrophobic RodA protein covalently bound to the conidial cell wall through glycosylphosphatidylinositol-remnants. RodA extracted from conidia of A. fumigatus was immunologically inert and did not induce dendritic cell or alveolar macrophage maturation and activation, and failed to activate helper T-cell immune responses in vivo. The removal of this surface 'rodlet/hydrophobin layer' either chemically (using hydrofluoric acid), genetically (DeltarodA mutant) or biologically (germination) resulted in conidial morphotypes inducing immune activation. All these observations show that the hydrophobic rodlet layer on the conidial cell surface immunologically silences airborne moulds.

686 citations

Journal ArticleDOI
TL;DR: Th17 cells are associated with the pathogenesis of several autoimmune and inflammatory diseases, such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, psoriasis, inflammatory bowel disease, and allergy and asthma and the various therapeutic strategies under investigation to target them are discussed.
Abstract: Th17 cells that secrete the cytokines IL-17A and IL-17F and express lineage-specific transcription factor RORC (RORγt in mice) represent a distinct lineage of CD4 + T cells. Transforming growth factor-β and inflammatory cytokines, such as IL-6, IL-21, IL-1β, and IL-23, play central roles in the generation of Th17 cells. Th17 cells are critical for the clearance of extracellular pathogens, including Candida and Klebsiella . However, under certain conditions, these cells and their effector molecules, such as IL-17, IL-21, IL-22, GM-CSF, and CCL20, are associated with the pathogenesis of several autoimmune and inflammatory diseases, such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, psoriasis, inflammatory bowel disease, and allergy and asthma. This review discusses these disease states and the various therapeutic strategies under investigation to target Th17 cells, which include blocking the differentiation and amplification of Th17 cells, inhibiting or neutralizing the cytokines of Th17 cells, and suppressing the transcription factors specific for Th17 cells.

542 citations

Journal ArticleDOI
TL;DR: It is shown that regulatory T cells render the DC inefficient as APCs despite prestimulation with CD40 ligand, and this effect was marginally reverted by neutralizing Abs to TGF-β and reduced expression of costimulatory molecules in DC.
Abstract: The characteristics and functions of CD4(+)CD25(+) regulatory cells have been well defined in murine and human systems. However, the interaction between CD4(+)CD25(+) T cells and dendritic cells (DC) remains unclear. In this study, we examined the effect of human CD4(+)CD25(+) T cells on maturation and function of monocyte-derived DC. We show that regulatory T cells render the DC inefficient as APCs despite prestimulation with CD40 ligand. This effect was marginally reverted by neutralizing Abs to TGF-beta. There was an increased IL-10 secretion and reduced expression of costimulatory molecules in DC. Thus, in addition to direct suppressor effect on CD4(+) T cells, regulatory T cells may modulate the immune response through DC.

494 citations

Journal ArticleDOI
15 Jan 2003-Blood
TL;DR: It is shown that IVIg inhibits the differentiation and maturation of DCs in vitro and abrogates the capacity of mature DC to secrete interleukin-12 (IL-12) on activation while enhancing IL-10 production.

303 citations


Cited by
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: The in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases were investigated and changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells.
Abstract: Zika virus (ZIKV) has recently caused a pandemic disease, and many cases of ZIKV infection in pregnant women resulted in abortion, stillbirth, deaths and congenital defects including microcephaly, which now has been proposed as ZIKV congenital syndrome. This study aimed to investigate the in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases. Brain tissue samples were collected from 15 cases, including 10 microcephalic ZIKV-positive neonates with fatal outcome and five neonatal control flavivirus-negative neonates that died due to other causes, but with preserved central nervous system (CNS) architecture. In microcephaly cases, the histopathological features of the tissue samples were characterized in three CNS areas (meninges, perivascular space, and parenchyma). The changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells. The in situ immune response against ZIKV in the CNS of newborns is complex. Despite the predominant expression of Th2 cytokines, other cytokines such as Th1, Th17, Treg, Th9, and Th22 are involved to a lesser extent, but are still likely to participate in the immunopathogenic mechanisms of neural disease in fatal cases of microcephaly caused by ZIKV.

3,514 citations