scispace - formally typeset
Search or ask a question
Author

Jagdish Narayan

Bio: Jagdish Narayan is an academic researcher from North Carolina State University. The author has contributed to research in topics: Thin film & Pulsed laser deposition. The author has an hindex of 73, co-authored 885 publications receiving 24635 citations. Previous affiliations of Jagdish Narayan include King George's Medical University & Kopin Corporation.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the splitting of the valence band by crystal field and spin-orbit interaction has been calculated and measured, and the measured values agree with the calculated values and the effects of strain on the splitting and optical properties have been studied in detail.
Abstract: During the last few years the developments in the field of III–nitrides have been spectacular. High quality epitaxial layers can now be grown by MOVPE. Recently good quality epilayers have also been grown by MBE. Considerable work has been done on dislocations, strain, and critical thickness of GaN grown on different substrates. Splitting of valence band by crystal field and by spin-orbit interaction has been calculated and measured. The measured values agree with the calculated values. Effects of strain on the splitting of the valence band and on the optical properties have been studied in detail. Values of band offsets at the heterointerface between several pairs of different nitrides have been determined. Extensive work has been done on the optical and electrical properties. Near band-edge spectra have been measured over a wide range of temperatures. Free and bound exciton peaks have been resolved. Valence band structure has been determined using the PL spectra and compared with the theoretically calcu...

1,202 citations

Journal ArticleDOI
TL;DR: The forward-directed nature of the laser evaporation process has been found to result from anisotropic expansion velocities of the atomic species which are controlled by the dimensions of the expanding plasma.
Abstract: We have studied in detail the physical phenomena involved in the interaction of high-powered nanosecond excimer-laser pulses with bulk targets resulting in evaporation, plasma formation, and subsequent deposition of thin films. A theoretical model for simulating these laser-plasma--solid interactions has been developed. In this model, the laser-generated plasma is treated as an ideal gas at high pressure and temperature, which is initially confined in small dimensions, and is suddenly allowed to expand in vacuum. The three-dimensional expansion of this plasma gives rise to the characteristic spatial thickness and compositional variations observed in laser-deposited thin films of multicomponent systems. The forward-directed nature of the laser evaporation process has been found to result from anisotropic expansion velocities of the atomic species which are controlled by the dimensions of the expanding plasma.Based on the nature of interaction of the laser beam with the target and the evaporated material, the pulsed-laser evaporation (PLE) process can be classified into three separate regimes: (i) interaction of the laser beam with the bulk target, (ii) plasma formation, heating, and initial three-dimensional isothermal expansion, and (iii) adiabatic expansion and deposition of thin films. The first two processes occur during the time interval of the laser pulse, while the last process initiates after the laser pulse terminates. Under PLE conditions, the evaporation of the target is assumed to be thermal in nature, while the plasma expansion dynamics is nonthermal as a result of interaction of the laser beam with the evaporated material. The equations of compressible gas dynamics are set up to simulate the expansion of the plasma in the last two regimes. The solution of the gas-dynamics equations shows that the expansion velocities of the plasma are related to its initial dimensions and temperature, and the atomic weight of the species. Detailed simulations analyzing the salient features of the laser-deposition process have been carried out. The effects of various beam and substrate parameters including pulse energy density, substrate-target distance, irradiated spot size, and atomic mass of the species have been theoretically analyzed. This model predicts most of the characteristic experimental features of the laser evaporation and deposition of thin films. These characteristic features include (a) the effect of pulse energy density on atomic velocities, (b) the forward-directed nature of the deposit and its dependence on energy density, (c) spatial compositional variations in multicomponent thin films as a function of energy density, (d) dependence of the atomic velocities with atomic weights of various species in multicomponent films, (e) athermal non-Maxwellian-type velocity distribution of the atomic and molecular species, and (f) thickness and compositional variations as a function of substrate-target distance and irradiated spot size.

898 citations

Journal ArticleDOI
TL;DR: In this paper, a unified model for thin film epitaxy where single crystal films with small and large lattice misfits are grown by domain matching epitaxy (DME) is presented.
Abstract: We present a unified model for thin film epitaxy where single crystal films with small and large lattice misfits are grown by domain matching epitaxy (DME). The DME involves matching of lattice planes between the film and the substrate having similar crystal symmetry. In this framework, the conventional lattice matching epitaxy becomes a special case where a matching of lattice constants or the same planes is involved with a small misfit of less than 7%–8%. In large lattice mismatch systems, we show that epitaxial growth of thin films is possible by matching of domains where integral multiples of major lattice planes match across the interface. We illustrate this concept with atomic-level details in the TiN/Si(100) with 3/4 matching, the AlN/Si(100)with 4/5 matching, and the ZnO/α−Al2O3(0001) with 6/7 matching of major planes across the film/substrate interface. By varying the domain size, which is equal to intregral multiple of lattice planes, in a periodic fashion, it is possible to accommodate addition...

530 citations

Journal ArticleDOI
TL;DR: In this paper, a copper/bronze laminates with varying interface spacing were fabricated by accumulative roll bonding and subsequent annealing to systematically study the interface effect on mechanical properties.

445 citations

Journal ArticleDOI
TL;DR: In this article, the optical and structural properties of high-quality single-crystal epitaxial MgZnO films deposited by pulsed-laser deposition were studied.
Abstract: The optical and structural properties of high-quality single-crystal epitaxial MgZnO films deposited by pulsed-laser deposition were studied. In films with up to ∼36 at. % Mg incorporation, we have observed intense ultraviolet band edge photoluminescence at room temperature and 77 K. The highly efficient photoluminescence is indicative of the excitonic nature of the material. Transmission spectroscopy was used to show that the excitonic structure of the alloys was clearly visible at room temperature. High-resolution transmission electron microscopy, x-ray diffraction, and Rutherford backscattering spectroscopy/ion channeling were used to verify the epitaxial single-crystal quality of the films and characterize the defect content. Post-deposition annealing in oxygen was found to reduce the number of defects and to improve the optical properties of the films. These results indicate that MgZnO alloys have potential applications in a variety of optoelectronic devices.

386 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: The mechanical properties of nanocrystalline materials are reviewed in this paper, with emphasis on their constitutive response and on the fundamental physical mechanisms, including the deviation from the Hall-Petch slope and possible negative slope, the effect of porosity, the difference between tensile and compressive strength, the limited ductility, the tendency for shear localization, fatigue and creep responses.

3,828 citations

Journal ArticleDOI
TL;DR: In this article, a review examines recent developments related to the use of ECAP for grain refinement including modifying conventional ECAP to increase the process efficiency and techniques for up-scaling the procedure and for the processing of hard-to-deform materials.

3,669 citations

Journal ArticleDOI
TL;DR: It is proposed thatferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band.
Abstract: Dilute ferromagnetic oxides having Curie temperatures far in excess of 300 K and exceptionally large ordered moments per transition-metal cation challenge our understanding of magnetism in solids. These materials are high-k dielectrics with degenerate or thermally activated n-type semiconductivity. Conventional super-exchange or double-exchange interactions cannot produce long-range magnetic order at concentrations of magnetic cations of a few percent. We propose that ferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band. The Curie temperature in the mean-field approximation varies as (xdelta)(1/2) where x and delta are the concentrations of magnetic cations and donors, respectively. High Curie temperatures arise only when empty minority-spin or majority-spin d states lie at the Fermi level in the impurity band. The magnetic phase diagram includes regions of semiconducting and metallic ferromagnetism, cluster paramagnetism, spin glass and canted antiferromagnetism.

2,743 citations