scispace - formally typeset
Search or ask a question
Author

Jagu Subhashini

Other affiliations: Johns Hopkins University
Bio: Jagu Subhashini is an academic researcher from University of Hyderabad. The author has contributed to research in topics: Apoptosis & Cytochrome c. The author has an hindex of 7, co-authored 7 publications receiving 709 citations. Previous affiliations of Jagu Subhashini include Johns Hopkins University.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that C-PC induces apoptosis in K562 cells by cytochrome c release from mitochondria into the cytosol, PARP cleavage and down regulation of Bcl-2.

213 citations

Journal ArticleDOI
TL;DR: This C-PC induced apoptosis in RAW 264.7 cells appears to be mediated by the release of cytochrome c from mitochondria and independent of Bcl-2 expression, and may be due to reduced PGE(2) levels as a result of COX-2 inhibition.

174 citations

Journal ArticleDOI
TL;DR: Data from an LPS rat model are consistent with oxidative stress as a major causal factor in altered steroidogenesis, spermatogenesis, and perhaps male infertility during endotoxin-induced acute inflammation.

137 citations

Journal ArticleDOI
TL;DR: Celecoxib potentiates apoptosis as shown by MTT assay, cytochrome c leakage, PARP cleavage, DNA fragmentation, Bcl-2 downregulation and possibly by inhibiting NF-kB activation.

76 citations

Journal ArticleDOI
TL;DR: A flow cytometry based DCFH-DA analysis and inhibitory studies with DPI revealed that NADPH oxidase-mediated generation of ROS is responsible for caspase-3 activation and subsequent induction of apoptosis in the K-562 cell line.

55 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review focuses on biochemical concepts of lipidPeroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting geneexpression and promoting cell death.
Abstract: Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.

3,647 citations

Journal ArticleDOI
TL;DR: The most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources.
Abstract: There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis.

935 citations

Journal ArticleDOI
TL;DR: Potential mechanisms are described and research gaps, which limit the understanding of the interaction between diet and postprandial and chronic low-grade inflammation, are identified.
Abstract: Low-grade inflammation is a characteristic of the obese state, and adipose tissue releases many inflammatory mediators. The source of these mediators within adipose tissue is not clear, but infiltrating macrophages seem to be especially important, although adipocytes themselves play a role. Obese people have higher circulating concentrations of many inflammatory markers than lean people do, and these are believed to play a role in causing insulin resistance and other metabolic disturbances. Blood concentrations of inflammatory markers are lowered following weight loss. In the hours following the consumption of a meal, there is an elevation in the concentrations of inflammatory mediators in the bloodstream, which is exaggerated in obese subjects and in type 2 diabetics. Both high-glucose and high-fat meals may induce postprandial inflammation, and this is exaggerated by a high meal content of advanced glycation end products (AGE) and partly ablated by inclusion of certain antioxidants or antioxidant-containing foods within the meal. Healthy eating patterns are associated with lower circulating concentrations of inflammatory markers. Among the components of a healthy diet, whole grains, vegetables and fruits, and fish are all associated with lower inflammation. AGE are associated with enhanced oxidative stress and inflammation. SFA and trans-MUFA are pro-inflammatory, while PUFA, especially long-chain n-3 PUFA, are anti-inflammatory. Hyperglycaemia induces both postprandial and chronic low-grade inflammation. Vitamin C, vitamin E and carotenoids decrease the circulating concentrations of inflammatory markers. Potential mechanisms are described and research gaps, which limit our understanding of the interaction between diet and postprandial and chronic low-grade inflammation, are identified.

872 citations

Journal ArticleDOI
TL;DR: The testes contain an elaborate array of antioxidant enzymes and free radical scavengers to ensure that the twin spermatogenic and steroidogenic functions of this organ are not impacted by oxidative stress.
Abstract: Spermatogenesis is an extremely active replicative process capable of generating approxi mately 1,000 sperm a second. The high rates of cell division inherent in this process imply correspondingly high rates of mitochondrial oxygen consumption by the germinal epithelium. However, the poor vascularization of the testes means that oxygen tensions in this tissue are low1 and that competition for this vital element within the testes is extremely intense. Since both spermatogenesis2 and Leydig cell steroidogenesis3,4 are vulnerable to oxidative stress, the low oxygen tension that characterizes this tissue may be an important component of the mechanisms by which the testes protects itself from free radical-mediated damage. In addition, the testes contain an elaborate array of antioxidant enzymes and free radical scavengers to ensure that the twin spermatogenic and steroidogenic functions of this organ are not impacted by oxidative stress. These antioxidant defence systems are of major importance because peroxidative damage is currently regarded as the single most important cause of impaired testicular function underpinning the pathological consequences of a wide range of conditions from testicular torsion to diabetes and xenobiotic exposure. This chapter sets out the specific nature of these antioxidant defence systems and also reviews the factors that have been found to impair their activity, precipitating a state of oxidative stress in the testes and impairing the latter’s ability to produce viable spermatozoa capable of initiating and supporting embryonic development.

731 citations