scispace - formally typeset
Search or ask a question
Author

Jai Narayan Tripathi

Bio: Jai Narayan Tripathi is an academic researcher from Indian Institute of Technology, Jodhpur. The author has contributed to research in topics: Jitter & Power integrity. The author has an hindex of 9, co-authored 65 publications receiving 247 citations. Previous affiliations of Jai Narayan Tripathi include STMicroelectronics & Indian Institutes of Technology.


Papers
More filters
Journal Article•DOI•
TL;DR: The primary focus of this paper is to discuss the modeling of jitter caused by power supply noise (PSN), named power supply induced jitter (PSIJ).
Abstract: The primary focus of this paper is to discuss the modeling of jitter caused by power supply noise (PSN), named power supply induced jitter (PSIJ). A holistic discussion is presented from the basics of power delivery networks to PSN and eventually to the modeling of PSIJ. The in-depth details and a review of several methodologies available in the literature for the estimation of PSIJ are presented.

45 citations

Journal Article•DOI•
TL;DR: An efficient method to estimate jitter in a chain of CMOS inverters in the presence of multiple noise sources, including the power supply noise, input data noise, and the ground bounce noise is presented.
Abstract: This paper presents an efficient method to estimate jitter in a chain of CMOS inverters in the presence of multiple noise sources, including the power supply noise, input data noise, and the ground bounce noise. For this purpose, necessary noise transfer functions are derived and the recently developed EMPSIJ method is advanced to handle cascaded CMOS inverter stages. Results from the proposed method are compared with the results from a conventional EDA simulator, which demonstrate a significant speed-up using the proposed method for a comparable accuracy.

30 citations

Journal Article•DOI•
TL;DR: In this paper, an efficient methodology for estimation of power supply induced jitter (PSIJ) in high-speed designs is presented, based on separating the large signal response and the small signal noise response and subsequently combining the results.
Abstract: An efficient methodology for estimation of power supply induced jitter (PSIJ) in high-speed designs is presented. Semianalytical expressions for jitter are derived based on separating the large signal response and the small signal noise response and subsequently combining the results. Proposed simplified relations enable the designers to estimate the PSIJ based on a single bit simulation. Proposed methods are validated on several examples of voltage-mode driver circuits, designed in different technologies and in the presence of different types of noise sources.

30 citations

Proceedings Article•DOI•
01 May 2017
TL;DR: In this paper, an optimal decoupling network is designed by Simulated Annealing to reduce the power supply noise in power delivery networks, which reduces the cumulative impedance of power delivery network.
Abstract: An efficient methodology for minimizing core supply noise in Power Delivery Networks is presented. To reduce the power supply noise, an optimal decoupling network is designed by Simulated Annealing. The cumulative impedance of Power Delivery Network is reduced using lesser number of decoupling capacitors compared to placing decoupling capacitors intuitively. The supply noise is minimized according to the requirement of system specifications and the corresponding jitter reduction is reported.

19 citations

Journal Article•DOI•
TL;DR: In this paper, the authors focus on damping cavity mode effects in power delivery networks by the particle swarm optimization technique and find the optimal capacitors and their locations on the board using the presented methodology.
Abstract: The Power Integrity problem for high speed systems is discussed in context of selection and placement of decoupling capacitors. Power Integrity is maintained by damping the cavity mode peaks at resonant frequencies using decoupling capacitors. This article focuses on damping cavity mode effects in power delivery networks by the particle swarm optimization technique. The s-parameter data of power plane geometry and capacitors are used for the accurate analysis including bulk capacitors and VRM, for a real world problem. The optimal capacitors and their locations on the board are found using the presented methodology, which can be used for similar power delivery networks in high speed systems.

18 citations


Cited by
More filters
Journal Article•
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal Article•DOI•

164 citations

01 Jan 2016
TL;DR: The logical effort designing fast cmos circuits is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can download it instantly.
Abstract: Thank you for reading logical effort designing fast cmos circuits. As you may know, people have search numerous times for their chosen novels like this logical effort designing fast cmos circuits, but end up in infectious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they are facing with some harmful bugs inside their desktop computer. logical effort designing fast cmos circuits is available in our book collection an online access to it is set as public so you can download it instantly. Our book servers hosts in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the logical effort designing fast cmos circuits is universally compatible with any devices to read.

137 citations

Journal Article•DOI•
TL;DR: An adaptive particle swarm optimization algorithm based on directed weighted complex network (DWCNPSO) is proposed that can effectively avoid the premature convergence problem and the convergence rate is faster.
Abstract: The disadvantages of particle swarm optimization (PSO) algorithm are that it is easy to fall into local optimum in high-dimensional space and has a low convergence rate in the iterative process. To deal with these problems, an adaptive particle swarm optimization algorithm based on directed weighted complex network (DWCNPSO) is proposed. Particles can be scattered uniformly over the search space by using the topology of small-world network to initialize the particles position. At the same time, an evolutionary mechanism of the directed dynamic network is employed to make the particles evolve into the scale-free network when the in-degree obeys power-law distribution. In the proposed method, not only the diversity of the algorithm was improved, but also particles’ falling into local optimum was avoided. The simulation results indicate that the proposed algorithm can effectively avoid the premature convergence problem. Compared with other algorithms, the convergence rate is faster.

74 citations

Journal Article•DOI•
Quan Yuan1, George Yin1•
TL;DR: A general form of PSO algorithms is considered, and asymptotic properties of the algorithms using stochastic approximation methods are analyzed, proving that a suitably scaled sequence of swarms converge to the solution of an ordinary differential equation.
Abstract: Recently, much progress has been made on particle swarm optimization (PSO). A number of works have been devoted to analyzing the convergence of the underlying algorithms. Nevertheless, in most cases, rather simplified hypotheses are used. For example, it often assumes that the swarm has only one particle. In addition, more often than not, the variables and the points of attraction are assumed to remain constant throughout the optimization process. In reality, such assumptions are often violated. Moreover, there are no rigorous rates of convergence results available to date for the particle swarm, to the best of our knowledge. In this paper, we consider a general form of PSO algorithms, and analyze asymptotic properties of the algorithms using stochastic approximation methods. We introduce four coefficients and rewrite the PSO procedure as a stochastic approximation type iterative algorithm. Then we analyze its convergence using weak convergence method. It is proved that a suitably scaled sequence of swarms converge to the solution of an ordinary differential equation. We also establish certain stability results. Moreover, convergence rates are ascertained by using weak convergence method. A centered and scaled sequence of the estimation errors is shown to have a diffusion limit.

45 citations