scispace - formally typeset
Search or ask a question
Author

Jai Narayan Tripathi

Bio: Jai Narayan Tripathi is an academic researcher from Indian Institute of Technology, Jodhpur. The author has contributed to research in topics: Jitter & Power integrity. The author has an hindex of 9, co-authored 65 publications receiving 247 citations. Previous affiliations of Jai Narayan Tripathi include STMicroelectronics & Indian Institutes of Technology.


Papers
More filters
Proceedings ArticleDOI
01 Dec 2017
TL;DR: The proposed semi-analytical method for jitter analysis is compared against the conventional simulations (commercial tools) in a 55nm technology of STMicroelectronics to find a reasonable matching.
Abstract: In this paper, a method is presented to estimate the effect of transmission media on power supply induced jitter for a voltage-mode driver circuit Transmission media is represented via its equivalent models of transmission lines while calculating the power supply induced jitter The proposed semi-analytical method for jitter analysis is compared against the conventional simulations (commercial tools) in a 55nm technology of STMicroelectronics A reasonable matching is reported

3 citations

Proceedings ArticleDOI
26 Jul 2021
TL;DR: In this paper, a metaheuristic technique based generic framework for decoupling capacitor optimization in a practical power delivery network is presented, where the cumulative impedance of a power delivery system is minimized below the target impedance by optimal selection and placement of decoupled capacitors using state-of-the-art meta-heuristic algorithms.
Abstract: In VLSI circuits and systems, it is a common practice to reduce power supply noise in power delivery networks by decoupling capacitors. The optimal selection and placement of decoupling capacitors is crucial for maintaining power integrity efficiently. This paper presents a metaheuristic technique based generic framework for decoupling capacitor optimization in a practical power delivery network. The cumulative impedance of a power delivery network is minimized below the target impedance by optimal selection and placement of decoupling capacitors using state-of-the-art metaheuristic algorithms. A comparative analysis of the performance of these algorithms is presented with the insights of practical implementation.

3 citations

Proceedings ArticleDOI
03 Jun 2019
TL;DR: This paper presents an analysis and estimation of timing error due to the power supply noise for a five-stage CMOS tapered buffer used in the clock distribution network for the application of successive approximation register (SAR).
Abstract: This paper presents an analysis and estimation of timing error due to the power supply noise for a five-stage CMOS tapered buffer used in the clock distribution network for the application of successive approximation register (SAR). The complete design is simulated in standard 28 nm CMOS technology with the supply voltage of 0.9 V. The closed-form expressions for time interval error have been derived using the matrix inversion method, considering the impact of deterministic supply noise. The results obtained from a slope-based semianalytical jitter estimation method are compared with the SPICE based simulations. The results show a good agreement with a maximum error of 4 %.

3 citations

Proceedings ArticleDOI
01 Nov 2017
TL;DR: From the analysis, the results are 96 %, 97 % and 90 % matched with the simulation results when the amplitude of the input ripple varies from 0 V to 1.8 V.
Abstract: This paper presents design and harmonic distortion analysis using Volterra series for a 12 V to 1.2 V buck converter designed in the 180 nm BCD8 technology of STMicroelectronics. The series determines the closed-form equations for fundamental, second and third harmonics. From the analysis, the results are 96 %, 97 % and 90 % matched with the simulation results when the amplitude of the input ripple varies from 0 V to 1.8 V.

2 citations

DOI
TL;DR: In this article , an automated framework for variability analysis that exploits the metaheuristic optimization techniques is presented to analyze the variability of integrated circuits and systems, which can be used to solve the circuit optimization problems.
Abstract: This work aims to analyze the variability of integrated circuits and systems. An automated framework is presented for variability analysis that exploits the metaheuristic optimization techniques. The efficacy of the proposed approach is demonstrated by two case studies—one is the estimation of variability in phase noise in RF CMOS LC tank oscillators (frequency domain analysis) and the other is the estimation of variability in the differential output signal of a current mode driver (time-domain analysis). The proposed approach is investigated and validated by comparing the results from the traditional Monte Carlo simulations and the ordinary least-squares-based polynomial chaos expansion. A significant gain in the computational time is reported while maintaining accuracy in the results. The proposed methodology is not just limited to variability analysis applications but also can be used to solve the circuit optimization problems.

2 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

01 Jan 2016
TL;DR: The logical effort designing fast cmos circuits is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can download it instantly.
Abstract: Thank you for reading logical effort designing fast cmos circuits. As you may know, people have search numerous times for their chosen novels like this logical effort designing fast cmos circuits, but end up in infectious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they are facing with some harmful bugs inside their desktop computer. logical effort designing fast cmos circuits is available in our book collection an online access to it is set as public so you can download it instantly. Our book servers hosts in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the logical effort designing fast cmos circuits is universally compatible with any devices to read.

137 citations

Journal ArticleDOI
TL;DR: An adaptive particle swarm optimization algorithm based on directed weighted complex network (DWCNPSO) is proposed that can effectively avoid the premature convergence problem and the convergence rate is faster.
Abstract: The disadvantages of particle swarm optimization (PSO) algorithm are that it is easy to fall into local optimum in high-dimensional space and has a low convergence rate in the iterative process. To deal with these problems, an adaptive particle swarm optimization algorithm based on directed weighted complex network (DWCNPSO) is proposed. Particles can be scattered uniformly over the search space by using the topology of small-world network to initialize the particles position. At the same time, an evolutionary mechanism of the directed dynamic network is employed to make the particles evolve into the scale-free network when the in-degree obeys power-law distribution. In the proposed method, not only the diversity of the algorithm was improved, but also particles’ falling into local optimum was avoided. The simulation results indicate that the proposed algorithm can effectively avoid the premature convergence problem. Compared with other algorithms, the convergence rate is faster.

74 citations

Journal ArticleDOI
TL;DR: A general form of PSO algorithms is considered, and asymptotic properties of the algorithms using stochastic approximation methods are analyzed, proving that a suitably scaled sequence of swarms converge to the solution of an ordinary differential equation.
Abstract: Recently, much progress has been made on particle swarm optimization (PSO). A number of works have been devoted to analyzing the convergence of the underlying algorithms. Nevertheless, in most cases, rather simplified hypotheses are used. For example, it often assumes that the swarm has only one particle. In addition, more often than not, the variables and the points of attraction are assumed to remain constant throughout the optimization process. In reality, such assumptions are often violated. Moreover, there are no rigorous rates of convergence results available to date for the particle swarm, to the best of our knowledge. In this paper, we consider a general form of PSO algorithms, and analyze asymptotic properties of the algorithms using stochastic approximation methods. We introduce four coefficients and rewrite the PSO procedure as a stochastic approximation type iterative algorithm. Then we analyze its convergence using weak convergence method. It is proved that a suitably scaled sequence of swarms converge to the solution of an ordinary differential equation. We also establish certain stability results. Moreover, convergence rates are ascertained by using weak convergence method. A centered and scaled sequence of the estimation errors is shown to have a diffusion limit.

45 citations