scispace - formally typeset
Search or ask a question
Author

Jaimie M. Houghton

Bio: Jaimie M. Houghton is an academic researcher. The author has contributed to research in topics: Gene & Gene expression. The author has an hindex of 1, co-authored 1 publications receiving 988 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that cold-induced expression of CRT/DRE-containing COR genes involves a low temperature-stimulated signalling cascade in which CBF gene induction is an early event and theCBF gene family is not subject to autoregulation.
Abstract: Cold-induced expression of the Arabidopsis COR (cold-regulated) genes is mediated by a DNA regulatory element termed the CRT (C-repeat)/DRE (dehydration-responsive element). Recently, we identified a transcriptional activator, CBF1, that binds to the CRT/DRE and demonstrated that its overexpression in transgenic Arabidopsis plants at non-acclimating temperatures induces COR gene expression and increases plant freezing tolerance. Here we report that CBF1 belongs to a small family of closely related proteins which includes CBF2 and CBF3. DNA sequencing of an 8.7 kb region of the Arabidopsis genome along with genetic mapping experiments indicated that the three CBF genes are organized in direct repeat on chromosome 4 at 72.8 cM, closely linked to molecular markers PG11 and m600. Like CBF1, both CBF2 and CBF3 activated expression of reporter genes in yeast that contained the CRT/DRE as an upstream activator sequence. The transcript levels for all three CBF genes increased within 15 min of transferring plants to low temperature, followed by accumulation of COR gene transcripts at about 2 h. CBF transcripts also accumulated rapidly in response to mechanical agitation. The promoter regions of the CBF genes do not contain the CRT sequence, CCGAC, and overexpression of CBF1 did not have a detectable effect on CBF3 transcript levels, suggesting that the CBF gene family is not subject to autoregulation. We propose that cold-induced expression of CRT/DRE-containing COR genes involves a low temperature-stimulated signalling cascade in which CBF gene induction is an early event.

1,090 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Salt and drought stress signal transduction consists of ionic and osmotic homeostasis signaling pathways, detoxification (i.e., damage control and repair) response pathways, and pathways for growth regulation.
Abstract: Salt and drought stress signal transduction consists of ionic and osmotic homeostasis signaling pathways, detoxification (i.e., damage control and repair) response pathways, and pathways for growth regulation. The ionic aspect of salt stress is signaled via the SOS pathway where a calcium-responsive SOS3-SOS2 protein kinase complex controls the expression and activity of ion transporters such as SOS1. Osmotic stress activates several protein kinases including mitogen-activated kinases, which may mediate osmotic homeostasis and/or detoxification responses. A number of phospholipid systems are activated by osmotic stress, generating a diverse array of messenger molecules, some of which may function upstream of the osmotic stress-activated protein kinases. Abscisic acid biosynthesis is regulated by osmotic stress at multiple steps. Both ABA-dependent and -independent osmotic stress signaling first modify constitutively expressed transcription factors, leading to the expression of early response transcriptional activators, which then activate downstream stress tolerance effector genes.

5,328 citations

Journal ArticleDOI
26 Sep 2003-Planta
TL;DR: The present review summarizes the recent advances in elucidating stress-response mechanisms and their biotechnological applications and examines the following aspects: regulatory controls, metabolite engineering, ion transport, antioxidants and detoxification, late embryogenesis abundant (LEA) and heat-shock proteins.
Abstract: Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity and oxidative stress are serious threats to agriculture and the natural status of the environment. Increased salinization of arable land is expected to have devastating global effects, resulting in 30% land loss within the next 25 years, and up to 50% by the year 2050. Therefore, breeding for drought and salinity stress tolerance in crop plants (for food supply) and in forest trees (a central component of the global ecosystem) should be given high research priority in plant biotechnology programs. Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. These genes are involved in the whole sequence of stress responses, such as signaling, transcriptional control, protection of membranes and proteins, and free-radical and toxic-compound scavenging. Recently, research into the molecular mechanisms of stress responses has started to bear fruit and, in parallel, genetic modification of stress tolerance has also shown promising results that may ultimately apply to agriculturally and ecologically important plants. The present review summarizes the recent advances in elucidating stress-response mechanisms and their biotechnological applications. Emphasis is placed on transgenic plants that have been engineered based on different stress-response mechanisms. The review examines the following aspects: regulatory controls, metabolite engineering, ion transport, antioxidants and detoxification, late embryogenesis abundant (LEA) and heat-shock proteins.

3,248 citations

Journal ArticleDOI
01 Jun 1999
TL;DR: This review of recent advances in determining the nature and function of genes with roles in freezing tolerance and the mechanisms involved in low temperature gene regulation and signal transduction concludes that cold acclimation includes the expression of certain cold-induced genes that function to stabilize membranes against freeze-induced injury.
Abstract: ▪ Abstract Many plants increase in freezing tolerance upon exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In this review, recent advances in determining the nature and function of genes with roles in freezing tolerance and the mechanisms involved in low temperature gene regulation and signal transduction are described. One of the important conclusions to emerge from these studies is that cold acclimation includes the expression of certain cold-induced genes that function to stabilize membranes against freeze-induced injury. In addition, a family of Arabidopsis transcription factors, the CBF/DREB1 proteins, have been identified that control the expression of a regulon of cold-induced genes that increase plant freezing tolerance. These results along with many of the others summarized here further our understanding of the basic mechanisms that plants have evolved to survive freezing temperatures. In addition, the findings have potential practical applications as freezing te...

2,938 citations

01 Jan 1999
TL;DR: A review of recent advances in determining the nature and function of genes with roles in freezing tolerance and the mechanisms involved in low temperature gene regulation and signal transduction are described in this article.
Abstract: ▪ Abstract Many plants increase in freezing tolerance upon exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In this review, recent advances in determining the nature and function of genes with roles in freezing tolerance and the mechanisms involved in low temperature gene regulation and signal transduction are described. One of the important conclusions to emerge from these studies is that cold acclimation includes the expression of certain cold-induced genes that function to stabilize membranes against freeze-induced injury. In addition, a family of Arabidopsis transcription factors, the CBF/DREB1 proteins, have been identified that control the expression of a regulon of cold-induced genes that increase plant freezing tolerance. These results along with many of the others summarized here further our understanding of the basic mechanisms that plants have evolved to survive freezing temperatures. In addition, the findings have potential practical applications as freezing te...

2,665 citations

Journal ArticleDOI
TL;DR: Various factors pertaining to cold acclimation, promoter elements, and role of transcription factors in stress signaling pathway have been described, and the role of calcium as an important signaling molecule in response to various stress signals has been covered.

2,626 citations