scispace - formally typeset
Search or ask a question
Author

Jake Christensen

Bio: Jake Christensen is an academic researcher from Bosch. The author has contributed to research in topics: Battery (electricity) & Lithium. The author has an hindex of 23, co-authored 55 publications receiving 3516 citations. Previous affiliations of Jake Christensen include University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discuss the most critical challenges to developing robust, high-energy Li/air batteries and suggest future research directions to understand and overcome these challenges and predict that Li-air batteries will primarily remain a research topic for the next several years.
Abstract: Lithium/air batteries, based on their high theoretical specific energy, are an extremely attractive technology for electrical energy storage that could make long-range electric vehicles widely affordable. However, the impact of this technology has so far fallen short of its potential due to several daunting challenges. In nonaqueous Li/air cells, reversible chemistry with a high current efficiency over several cycles has not yet been established, and the deposition of an electrically resistive discharge product appears to limit the capacity. Aqueous cells require water-stable lithium-protection membranes that tend to be thick, heavy, and highly resistive. Both types of cell suffer from poor oxygen redox kinetics at the positive electrode and deleterious volume and morphology changes at the negative electrode. Closed Li/air systems that include oxygen storage are much larger and heavier than open systems, but so far oxygen- and OH − -selective membranes are not effective in preventing contamination of cells. In this review we discuss the most critical challenges to developing robust, high-energy Li/air batteries and suggest future research directions to understand and overcome these challenges. We predict that Li/air batteries will primarily remain a research topic for the next several years. However, if the fundamental challenges can be met, the Li/air battery has the potential to significantly surpass the energy storage capability of today’s Li-ion batteries.

1,032 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a detailed description and model of a Li-ion battery, which is based on using electrochemical principles to develop a physics-based model in contrast to equivalent circuit models.
Abstract: Lithium-ion (Li-ion) batteries are ubiquitous sources of energy for portable electronic devices. Compared to alternative battery technologies, Li-ion batteries provide one of the best energy-to-weight ratios, exhibit no memory effect, and have low self-discharge when not in use. These beneficial properties, as well as decreasing costs, have established Li-ion batteries as a leading candidate for the next generation of automotive and aerospace applications. In the automotive sector, increasing demand for hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), and EVs has pushed manufacturers to the limits of contemporary automotive battery technology. This limitation is gradually forcing consideration of alternative battery technologies, such as Li-ion batteries, as a replacement for existing leadacid and nickel-metal-hydride batteries. Unfortunately, this replacement is a challenging task since automotive applications demand large amounts of energy and power and must operate safely, reliably, and durably at these scales. The article presents a detailed description and model of a Li-ion battery. It begins the section "Intercalation-Based Batteries" by providing an intuitive explanation of the fundamentals behind storing energy in a Li-ion battery. In the sections "Modeling Approach" and "Li-Ion Battery Model," it present equations that describe a Li-ion cell's dynamic behavior. This modeling is based on using electrochemical principles to develop a physics-based model in contrast to equivalent circuit models. A goal of this article is to present the electrochemical model from a controls perspective.

566 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a physics-based model that incorporates the major thermodynamic, transport, and kinetic processes of the Li/oxygen battery, and obtain a good match between porous-electrode experiments and simulations by using an empirical fit to the resistance of the discharge products (which include carbonates and oxides when using carbonate solvents) as a function of thickness.
Abstract: The Li/oxygen battery may achieve a high practical specific energy as its theoretical specific energy is 11,400 Wh/kg Li assuming Li 2 O 2 is the product. To help understand the physics of the Li/oxygen battery we present the first physics-based model that incorporates the major thermodynamic, transport, and kinetic processes. We obtain a good match between porous-electrode experiments and simulations by using an empirical fit to the resistance of the discharge products (which include carbonates and oxides when using carbonate solvents) as a function of thickness that is obtained from flat-electrode experiments. The experiments and model indicate that the discharge products are electronically resistive, limiting their thickness to tens of nanometers and their volume fraction in one of our discharged porous electrodes to a few percent. Flat-electrode experiments, where pore clogging is impossible, show passivation similar to porous-electrode experiments and allow us to conclude that electrical passivation is the dominant capacity-limiting mechanism in our cells. Although in carbonate solvents Li 2 O 2 is not the dominant discharge product, we argue that the implications of this model, (i.e., electrical passivation by the discharge products limits the capacity) also apply if Li 2 O 2 is the discharge product, as it is an intrinsic electronic insulator.

282 citations

Journal ArticleDOI
TL;DR: This work proposes an output error injection observer based on a reduced set of partial differential-algebraic equations that has a less complex structure, while it still captures the main dynamics of a lithium-ion battery.
Abstract: Batteries are the key technology for enabling further mobile electrification and energy storage. Accurate prediction of the state of the battery is needed not only for safety reasons, but also for better utilization of the battery. In this work we present a state estimation strategy for a detailed electrochemical model of a lithium-ion battery. The benefit of using a detailed model is the additional information obtained about the battery, such as accurate estimates of the internal temperature, the state of charge within the individual electrodes, overpotential, concentration and current distribution across the electrodes, which can be utilized for safety and optimal operation. Based on physical insight, we propose an output error injection observer based on a reduced set of partial differential-algebraic equations. This reduced model has a less complex structure, while it still captures the main dynamics. The observer is extensively studied in simulations and validated in experiments for actual electric-vehicle drive cycles. Experimental results show the observer to be robust with respect to unmodeled dynamics as well as to noisy and biased voltage and current measurements. The available state estimates can be used for monitoring purposes or incorporated into a model based controller to improve the performance of the battery while guaranteeing safe operation.

261 citations

Journal ArticleDOI
TL;DR: The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formation during both the initial electrochemical deposition onto a copper foil and the subsequent cycling.
Abstract: Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formation during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. The protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte.

230 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
TL;DR: New strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively.
Abstract: Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid–solution range. The solid–solution range, which is...

6,950 citations

Journal ArticleDOI
TL;DR: In this article, various factors that affect the morphology and Coulombic efficiency of Li metal anodes have been analyzed, and the results obtained by modelling of Li dendrite growth have also been reviewed.
Abstract: Lithium (Li) metal is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mA h g−1), low density (0.59 g cm−3) and the lowest negative electrochemical potential (−3.040 V vs. the standard hydrogen electrode). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post-Li-ion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li–air batteries, Li–S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this paper, various factors that affect the morphology and Coulombic efficiency of Li metal anodes have been analyzed. Technologies utilized to characterize the morphology of Li deposition and the results obtained by modelling of Li dendrite growth have also been reviewed. Finally, recent development and urgent need in this field are discussed.

3,394 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a background overview and discuss the state of the art, ion-transport mechanisms and fundamental properties of solid-state electrolyte materials of interest for energy storage applications.
Abstract: Solid-state electrolytes are attracting increasing interest for electrochemical energy storage technologies. In this Review, we provide a background overview and discuss the state of the art, ion-transport mechanisms and fundamental properties of solid-state electrolyte materials of interest for energy storage applications. We focus on recent advances in various classes of battery chemistries and systems that are enabled by solid electrolytes, including all-solid-state lithium-ion batteries and emerging solid-electrolyte lithium batteries that feature cathodes with liquid or gaseous active materials (for example, lithium–air, lithium–sulfur and lithium–bromine systems). A low-cost, safe, aqueous electrochemical energy storage concept with a ‘mediator-ion’ solid electrolyte is also discussed. Advanced battery systems based on solid electrolytes would revitalize the rechargeable battery field because of their safety, excellent stability, long cycle lives and low cost. However, great effort will be needed to implement solid-electrolyte batteries as viable energy storage systems. In this context, we discuss the main issues that must be addressed, such as achieving acceptable ionic conductivity, electrochemical stability and mechanical properties of the solid electrolytes, as well as a compatible electrolyte/electrode interface. This Review details recent advances in battery chemistries and systems enabled by solid electrolytes, including all-solid-state lithium-ion, lithium–air, lithium–sulfur and lithium–bromine batteries, as well as an aqueous battery concept with a mediator-ion solid electrolyte.

2,749 citations