scispace - formally typeset
Search or ask a question
Author

Jakob R. Jansson

Bio: Jakob R. Jansson is an academic researcher from Temple University. The author has an hindex of 1, co-authored 2 publications receiving 1 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed new testing strategies to accelerate the time-to-decision for SARS-CoV-2 detection and new spectroscopic methods were developed to accelerate time to decision.
Abstract: In winter of 2020, SARS-CoV-2 emerged as a global threat, impacting not only health but also financial and political stability. To address the societal need for monitoring the spread of SARS-CoV-2, many existing diagnostic technologies were quickly adapted to detect SARS-CoV-2 RNA and antigens as well as the immune response, and new testing strategies were developed to accelerate time-to-decision. In parallel, the infusion of research support accelerated the development of new spectroscopic methods. While these methods have significantly reduced the impact of SARS-CoV-2 on society when coupled with behavioral changes, they also lay the groundwork for a new generation of platform technologies. With several epidemics on the horizon, such as the rise of antibiotic-resistant bacteria, the ability to quickly pivot the target pathogen of this diagnostic toolset will continue to have an impact. ©

9 citations

Posted Content
TL;DR: In this article, the authors proposed a new platform to detect SARS-CoV-2 RNA and antigens as well as the immune response and new testing strategies were developed to accelerate time-to-decision.
Abstract: In winter of 2020, SARS-CoV-2 emerged as a global threat, impacting not only health but also financial and political stability. To address the societal need for monitoring the spread of SARS-CoV-2, many existing diagnostic technologies were quickly adapted to detect SARS-CoV-2 RNA and antigens as well as the immune response and new testing strategies were developed to accelerate time-to-decision. In parallel, the infusion of research support accelerated the development of new spectroscopic methods. While these methods have significantly reduced the impact of SARS-CoV-2 on society when coupled with behavioral changes, they also lay the groundwork for a new generation of platform technologies. With several epidemics on the horizon, such as the rise of antibiotic-resistant bacteria, the ability to quickly pivot the target pathogen of this diagnostic toolset will continue to have an impact.

Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review outlines principles and applications of phototherapy and optical waveguides for infection control, as well as challenges and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.

23 citations

Journal ArticleDOI
01 Feb 2023-Vaccines
TL;DR: In this article , a review of available molecular diagnostic techniques and their pitfalls in detecting emerging VOCs of SARS-CoV-2, and lastly, we have discussed AI-ML- and nanotechnology-based smart diagnostic techniques for SARS CoV2 detection.
Abstract: Accurate identification at an early stage of infection is critical for effective care of any infectious disease. The “coronavirus disease 2019 (COVID-19)” outbreak, caused by the virus “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”, corresponds to the current and global pandemic, characterized by several developing variants, many of which are classified as variants of concern (VOCs) by the “World Health Organization (WHO, Geneva, Switzerland)”. The primary diagnosis of infection is made using either the molecular technique of RT-PCR, which detects parts of the viral genome’s RNA, or immunodiagnostic procedures, which identify viral proteins or antibodies generated by the host. As the demand for the RT-PCR test grew fast, several inexperienced producers joined the market with innovative kits, and an increasing number of laboratories joined the diagnostic field, rendering the test results increasingly prone to mistakes. It is difficult to determine how the outcomes of one unnoticed result could influence decisions about patient quarantine and social isolation, particularly when the patients themselves are health care providers. The development of point-of-care testing helps in the rapid in-field diagnosis of the disease, and such testing can also be used as a bedside monitor for mapping the progression of the disease in critical patients. In this review, we have provided the readers with available molecular diagnostic techniques and their pitfalls in detecting emerging VOCs of SARS-CoV-2, and lastly, we have discussed AI-ML- and nanotechnology-based smart diagnostic techniques for SARS-CoV-2 detection.

5 citations

Journal ArticleDOI
TL;DR: This review systematically discusses different aspects of virions and how their properties and functions can be studied using different light‐based technologies, focusing on virion classification, detection and interactions with the host's immune system.
Abstract: In the last few decades outbreaks of viral infections have often challenged the world‐wide health infrastructure and caused a significant financial burden as well as human suffering despite progress in diagnostic technologies. The recent outbreaks of the Ebola virus in the African continent, the Zika virus in the American continent, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), influenza A and lately severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) viral infections have repeatedly highlighted the importance of technological advancement enabling a better understanding of virions. In this review, we systematically discuss different aspects of virions and how their properties and functions can be studied using different light‐based technologies. We focus on virion classification, detection and interactions with the host's immune system. Further, the potential of advanced biophotonic methods, for example, Raman, infrared reflection, absorption and fluorescence spectroscopy, advanced microscopic techniques and biosensor‐based approaches for diagnosing viral infections, investigating therapeutics and vaccine development are described. Although significant advancements have already been made in photonic technologies, which even enable visualizing virion‐host interactions on single‐cell level, the continuous evolution of viruses demands further progress in biophotonic solutions for fast, affordable and robust health monitoring devices for screening viral infections.

3 citations

Journal ArticleDOI
TL;DR: In this paper , the authors analyzed biochemical modifications due to SARS-CoV-2 infection in cells by confocal Raman microscopy and compared the results with the infection with another RNA virus, the measles virus.
Abstract: SARS-CoV-2 infection remains spread worldwide and requires a better understanding of virus-host interactions. Here, we analyzed biochemical modifications due to SARS-CoV-2 infection in cells by confocal Raman microscopy. Obtained results were compared with the infection with another RNA virus, the measles virus. Our results have demonstrated a virus-specific Raman molecular signature, reflecting intracellular modification during each infection. Advanced data analysis has been used to distinguish non-infected versus infected cells for two RNA viruses. Further, classification between non-infected and SARS-CoV-2 and measles virus-infected cells yielded an accuracy of 98.9 and 97.2 respectively, with a significant increase of the essential amino-acid tryptophan in SARS-CoV-2-infected cells. These results present proof of concept for the application of Raman spectroscopy to study virus-host interaction and to identify factors that contribute to the efficient SARS-CoV-2 infection and may thus provide novel insights on viral pathogenesis, targets of therapeutic intervention and development of new COVID-19 biomarkers.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the authors analyzed biochemical modifications due to SARS-CoV-2 infection in cells by confocal Raman microscopy and compared the results with the infection with another RNA virus, the measles virus.
Abstract: SARS-CoV-2 infection remains spread worldwide and requires a better understanding of virus-host interactions. Here, we analyzed biochemical modifications due to SARS-CoV-2 infection in cells by confocal Raman microscopy. Obtained results were compared with the infection with another RNA virus, the measles virus. Our results have demonstrated a virus-specific Raman molecular signature, reflecting intracellular modification during each infection. Advanced data analysis has been used to distinguish non-infected versus infected cells for two RNA viruses. Further, classification between non-infected and SARS-CoV-2 and measles virus-infected cells yielded an accuracy of 98.9 and 97.2 respectively, with a significant increase of the essential amino-acid tryptophan in SARS-CoV-2-infected cells. These results present proof of concept for the application of Raman spectroscopy to study virus-host interaction and to identify factors that contribute to the efficient SARS-CoV-2 infection and may thus provide novel insights on viral pathogenesis, targets of therapeutic intervention and development of new COVID-19 biomarkers.

2 citations