scispace - formally typeset
Search or ask a question
Author

Jamal N. Al-Karaki

Bio: Jamal N. Al-Karaki is an academic researcher from Hashemite University. The author has contributed to research in topics: Wireless Routing Protocol & Wireless ad hoc network. The author has an hindex of 20, co-authored 63 publications receiving 6125 citations. Previous affiliations of Jamal N. Al-Karaki include Higher Colleges of Technology & Iowa State University.


Papers
More filters
Journal ArticleDOI
TL;DR: A survey of state-of-the-art routing techniques in WSNs is presented and the design trade-offs between energy and communication overhead savings in every routing paradigm are studied.
Abstract: Wireless sensor networks consist of small nodes with sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. Routing protocols in WSNs might differ depending on the application and network architecture. In this article we present a survey of state-of-the-art routing techniques in WSNs. We first outline the design challenges for routing protocols in WSNs followed by a comprehensive survey of routing techniques. Overall, the routing techniques are classified into three categories based on the underlying network structure: flit, hierarchical, and location-based routing. Furthermore, these protocols can be classified into multipath-based, query-based, negotiation-based, QoS-based, and coherent-based depending on the protocol operation. We study the design trade-offs between energy and communication overhead savings in every routing paradigm. We also highlight the advantages and performance issues of each routing technique. The article concludes with possible future research areas.

4,701 citations

Proceedings ArticleDOI
24 Aug 2004
TL;DR: This work presents exact and approximate algorithms to find the minimum number of aggregation points in order to maximize the network lifetime in WSNs and studies the tradeoffs between energy savings and the potential delay involved in the data aggregation process.
Abstract: A fundamental challenge in the design of wireless sensor networks (WSNs) is to maximize their lifetimes. Data aggregation has emerged as a basic approach in WSNs in order to reduce the number of transmissions of sensor nodes, and hence minimizing the overall power consumption in the network. We study optimal data aggregation in WSNs. Data aggregation is affected by several factors, such as the placement of aggregation points, the aggregation function, and the density of sensors in the network. The determination of an optimal selection of aggregation points is thus extremely important. We present exact and approximate algorithms to find the minimum number of aggregation points in order to maximize the network lifetime. Our algorithms use a fixed virtual wireless backbone that is built on top of the physical topology. We also study the tradeoffs between energy savings and the potential delay involved in the data aggregation process. Numerical results show that our approach provides substantial energy savings.

269 citations

Journal ArticleDOI
09 Jul 2010-Sensors
TL;DR: The design challenges of WMSNs are outlined, a comprehensive discussion of the proposed architectures, algorithms and protocols for the different layers of the communication protocol stack for WMSN's are given, and the existing WMSN hardware and testbeds are evaluated.
Abstract: Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. In this paper, we outline the design challenges of WMSNs, give a comprehensive discussion of the proposed architectures, algorithms and protocols for the different layers of the communication protocol stack for WMSNs, and evaluate the existing WMSN hardware and testbeds. The paper will give the reader a clear view of the state of the art at all aspects of this research area, and shed the light on its main current challenges and future trends. We also hope it will foster discussions and new research ideas among its researchers.

256 citations

Journal ArticleDOI
TL;DR: This paper presents Grid-based Routing and Aggregator Selection Scheme (GRASS), a scheme for WSNs that can achieve low energy dissipation and low latency without sacrificing quality, and shows that, when compared to other schemes, GRASS improves system lifetime with acceptable levels of latency in data aggregation and without sacrificing data quality.

163 citations

Journal ArticleDOI
TL;DR: An adaptive traffic control system based on a new traffic infrastructure using Wireless Sensor Network (WSN) and using new techniques for controlling the traffic flow sequences, which is dynamically adaptive to traffic conditions on both single and multiple intersections.
Abstract: Vehicular traffic is continuously increasing around the world, especially in large urban areas. The resulting congestion has become a major concern to transportation specialists and decision makers. The existing methods for traffic management, surveillance and control are not adequately efficient in terms of performance, cost, maintenance, and support. In this paper, the design of a system that utilizes and efficiently manages traffic light controllers is presented. In particular, we present an adaptive traffic control systembased on a new traffic infrastructure using Wireless Sensor Network (WSN) and using new techniques for controlling the traffic flow sequences. These techniques are dynamically adaptive to traffic conditions on both single and multiple intersections. A WSN is used as a tool to instrument and control traffic signals roadways, while an intelligent traffic controller is developed to control the operation of the traffic infrastructure supported by the WSN. The controller embodies traffic system communication algorithm (TSCA) and the traffic signals time manipulation algorithm (TSTMA). Both algorithms are able to provide the system with adaptive and efficient traffic estimation represented by the dynamic change in the traffic signals' flow sequence and traffic variation. Simulation results show the efficiency of the proposed scheme in solving traffic congestion in terms of the average waiting time and average queue length on the isolated (single) intersection and efficient global traffic flow control on multiple intersections. A test bed was also developed and deployed for real measurements. The paper concludes with some future highlights and useful remarks.

156 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a cloud centric vision for worldwide implementation of Internet of Things (IoT) and present a Cloud implementation using Aneka, which is based on interaction of private and public Clouds, and conclude their IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.

9,593 citations

Journal ArticleDOI
TL;DR: A survey of state-of-the-art routing techniques in WSNs is presented and the design trade-offs between energy and communication overhead savings in every routing paradigm are studied.
Abstract: Wireless sensor networks consist of small nodes with sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. Routing protocols in WSNs might differ depending on the application and network architecture. In this article we present a survey of state-of-the-art routing techniques in WSNs. We first outline the design challenges for routing protocols in WSNs followed by a comprehensive survey of routing techniques. Overall, the routing techniques are classified into three categories based on the underlying network structure: flit, hierarchical, and location-based routing. Furthermore, these protocols can be classified into multipath-based, query-based, negotiation-based, QoS-based, and coherent-based depending on the protocol operation. We study the design trade-offs between energy and communication overhead savings in every routing paradigm. We also highlight the advantages and performance issues of each routing technique. The article concludes with possible future research areas.

4,701 citations

Amin Vahdat1
01 Jan 2000
TL;DR: This work introduces Epidemic Routing, where random pair-wise exchanges of messages among mobile hosts ensure eventual message delivery and achieves eventual delivery of 100% of messages with reasonable aggregate resource consumption in a number of interesting scenarios.
Abstract: Mobile ad hoc routing protocols allow nodes with wireless adaptors to communicate with one another without any pre-existing network infrastructure. Existing ad hoc routing protocols, while robust to rapidly changing network topology, assume the presence of a connected path from source to destination. Given power limitations, the advent of short-range wireless networks, and the wide physical conditions over which ad hoc networks must be deployed, in some scenarios it is likely that this assumption is invalid. In this work, we develop techniques to deliver messages in the case where there is never a connected path from source to destination or when a network partition exists at the time a message is originated. To this end, we introduce Epidemic Routing, where random pair-wise exchanges of messages among mobile hosts ensure eventual message delivery. The goals of Epidemic Routing are to: i) maximize message delivery rate, ii) minimize message latency, and iii) minimize the total resources consumed in message delivery. Through an implementation in the Monarch simulator, we show that Epidemic Routing achieves eventual delivery of 100% of messages with reasonable aggregate resource consumption in a number of interesting scenarios.

4,355 citations

Journal ArticleDOI
TL;DR: Existing solutions and open research issues at the application, transport, network, link, and physical layers of the communication protocol stack are investigated, along with possible cross-layer synergies and optimizations.

2,311 citations

Journal ArticleDOI
TL;DR: The fast progress of research on energy efficiency, networking, data management and security in wireless sensor networks, and the need to compare with the solutions adopted in the standards motivates the need for a survey on this field.

1,708 citations