scispace - formally typeset
Search or ask a question
Author

Jamal Seyyed Monfared Zanjani

Other affiliations: Sabancı University
Bio: Jamal Seyyed Monfared Zanjani is an academic researcher from University of Twente. The author has contributed to research in topics: Electrospinning & Glass fiber. The author has an hindex of 12, co-authored 36 publications receiving 454 citations. Previous affiliations of Jamal Seyyed Monfared Zanjani include Sabancı University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, three different architectural designs are developed for manufacturing advanced multi-scale reinforced epoxy based composites in which graphene sheets and carbon fibers are utilized as nano-and micro-scale reinforcements, respectively.
Abstract: Three different architectural designs are developed for manufacturing advanced multi-scale reinforced epoxy based composites in which graphene sheets and carbon fibers are utilized as nano- and micro-scale reinforcements, respectively. In the first design, electrospraying technique as an efficient and up-scaleable method is employed for the selective deposition of graphene sheets onto the surface of carbon fabric mats. Controlled and uniform dispersion of graphene sheets on the surface of carbon fabric mats enhances the interfacial strength between the epoxy matrix and carbon fibers and increases the efficiency of load transfer between matrix and reinforcing fibers. In the second design, graphene sheets are directly dispersed into the hardener-epoxy mixture to produce carbon fiber/epoxy composites with graphene reinforced matrix. In the third design, the combination of the first and the second arrangements is employed to obtain a multi-scale hybrid composite with superior mechanical properties. The effect of graphene sheets as an interface modifier and as a matrix reinforcement as well as the synergetic effect due to the combination of both arrangements are investigated in details by conducting various physical–chemical characterization techniques. Graphene/carbon fiber/epoxy composites in all three different arrangements of graphene sheets show enhancement in in-plane and out of plane mechanical performances. In the hybrid composite structure in which graphene sheets are used as both interface modifier and matrix reinforcing agent, remarkable improvements are observed in the work of fracture by about 55% and the flexural strength by about 51% as well as notable enhancement on other mechanical properties.

67 citations

Journal ArticleDOI
TL;DR: In this paper, damage evolution in glass/carbon fiber hybrid composites with various stacking sequences is investigated under pure bending and tensile loading conditions, and the hybrid effect and ratio is calculated for all laminates.

65 citations

Journal ArticleDOI
TL;DR: In this paper, multi-walled healing fibers with a novel architecture are fabricated through a direct, one-step triaxial electrospinning process to encapsulate different healing agents inside the fibers with two distinct protective walls.
Abstract: Multi-walled healing fibers with a novel architecture are fabricated through a direct, one-step tri-axial electrospinning process to encapsulate different healing agents inside the fibers with two distinct protective walls. Self healing systems based on ring opening metathesis polymerization (ROMP) and an amine–epoxy reaction are redesigned by utilizing these tri-axial fibers. In ROMP, Grubbs' catalysts are integrated in the outer wall of the fibers instead of the composite matrix to reduce the catalyst amount and prevent its deactivation during composite production. In the amine–epoxy healing system, epoxy resin and an amine-based curing agent are encapsulated separately by a multi-axial electrospinning. The presence of an extra layer facilitates the encapsulation of amine based healing agents with a highly active nature and extends the efficiency and life-time of the healing functionality. These new self-healing designs provide repeated self healing ability to preserve the mechanical properties of the composite by repairing micro and nano scale cracks under high loadings.

55 citations

Journal ArticleDOI
TL;DR: In this paper, three different methods were utilized for the incorporation of graphene into the carbon fiber reinforced polymeric (CFRP) composites: electrosprayed on the surface of carbon fibers as interface modifiers and dispersed into the epoxy resin to improve the matrix properties.
Abstract: Vacuum infusion process was employed for the fabrication of carbon fiber reinforced polymeric (CFRP) composites modified by graphene. Three different methods were utilized for the incorporation of graphene into the CFRP composites. In the first and second approaches, graphene sheets were respectively electrosprayed on the surface of carbon fibers as interface modifiers and dispersed into the epoxy resin to improve the matrix properties. The third method includes the concurrent usage of both treatments just mentioned above. The viscoelastic behavior of composites was examined by dynamical mechanical testing at different temperatures, frequencies and graphene integration configurations. In addition, the effect of graphene on the electrical conductivity, thermal diffusivity and electro-thermal performance of composites was also studied in detail. The results indicated that the fiber reinforced polymeric composites gain multi-functionality while preserving their mechanical integrity for all graphene integration configurations with significant improvements when graphene is used simultaneously as the interface modifier and the matrix reinforcement.

44 citations

Journal ArticleDOI
TL;DR: In this paper, triaxial electrospun fiber interlayers provide self-healing functionality at the interface of glass fibers with epoxy matrix, which is highly prone to failure.
Abstract: Tri-axial electrospun fibers with self-healing capability are fabricated through a direct, one-step tri-axial electrospinning process. They have been designed to have two distinct protective walls to encapsulate epoxy resin and its hardener as healing agents in separate cores. The presence of an extra layer between encapsulated liquid healing agent and outer layer enables the encapsulation of chemically and physically active healing agents, extends the efficiency and life-time of the healing functionality. Tri-axial electrospun healing fibers are incorporated to add self-healing capability into solo epoxy matrix and also utilized as an interlayer between glass fabric mats in glass fiber reinforced composite. Tri-axial electrospun fiber interlayers provide self-healing functionality at the interface of glass fibers with epoxy matrix, which is highly prone to failure. In addition, various structural health monitoring and non-destructive testing techniques coupled with traditional mechanical testing methods are employed to evaluate the self-healing efficiency of composite structures. In this study, successful and recurring self-healing ability of composite structures at the interface of glass fiber with the epoxy matrix are achieved and confirmed using different characterization techniques.

39 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jun 2005

3,154 citations