scispace - formally typeset
Search or ask a question
Author

James A. Frank

Bio: James A. Frank is an academic researcher from University of California, San Francisco. The author has contributed to research in topics: Lung injury & Lung. The author has an hindex of 30, co-authored 59 publications receiving 3679 citations. Previous affiliations of James A. Frank include Cardiovascular Institute Hospital & University of California, Berkeley.
Topics: Lung injury, Lung, ARDS, Pulmonary edema, Claudin


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors tested the therapeutic capacity of human MSCs to restore alveolar epithelial fluid transport and lung fluid balance from acute lung injury (ALI) in an ex vivo perfused human lung preparation injured by E. coli endotoxin.
Abstract: Recent studies have suggested that bone marrow-derived multipotent mesenchymal stem cells (MSCs) may have therapeutic applications in multiple clinical disorders including myocardial infarction, diabetes, sepsis, and hepatic and acute renal failure. Here, we tested the therapeutic capacity of human MSCs to restore alveolar epithelial fluid transport and lung fluid balance from acute lung injury (ALI) in an ex vivo perfused human lung preparation injured by E. coli endotoxin. Intra-bronchial instillation of endotoxin into the distal airspaces resulted in pulmonary edema with the loss of alveolar epithelial fluid transport measured as alveolar fluid clearance. Treatment with allogeneic human MSCs or its conditioned medium given 1 h following endotoxin-induced lung injury reduced extravascular lung water, improved lung endothelial barrier permeability and restored alveolar fluid clearance. Using siRNA knockdown of potential paracrine soluble factors, secretion of keratinocyte growth factor was essential for the beneficial effect of MSCs on alveolar epithelial fluid transport, in part by restoring amiloride-dependent sodium transport. In summary, treatment with allogeneic human MSCs or the conditioned medium restores normal fluid balance in an ex vivo perfused human lung injured by E. coli endotoxin.

493 citations

Journal ArticleDOI
TL;DR: It is concluded that low tidal volume ventilation protects both the alveolar epithelium and the endothelium in this model of acute lung injury.
Abstract: Using a rat model of acid-induced lung injury, we tested the hypothesis that tidal volume reduction at the same level of PEEP (10 cm H2O) would diminish the degree of pulmonary edema by attenuating injury to the alveolar epithelial and endothelial barriers. Tidal volume reduction from 12 to 6 to 3 ml/kg significantly reduced the rate of lung water accumulation from 690 μ l/h to 310 μ l/h to 210 μ l/h. Ventilation with either 6 or 3 ml/kg reduced endothelial injury equally as measured by plasma vWf:Ag and permeability to albumin. Plasma RTI40, a marker of type I epithelial cell injury, decreased 46% when tidal volume was reduced from 12 to 6 ml/kg and decreased an additional 33% with 3 ml/kg (p < 0.05). The rate of alveolar epithelial fluid clearance was significantly faster in the 3-ml/kg group (24 ± 7%/h) compared with 6 ml/kg (15 ± 11%/h) and 12 ml/kg (3 ± 6%/h). We conclude that low tidal volume ventilation protects both the alveolar epithelium and the endothelium in this model of acute lung injury. Th...

273 citations

Journal ArticleDOI
TL;DR: A critical role is demonstrated for the &agr;v&b Gr;5/&bgr;6 integrins in mediating the IL-1&b gr;–induced ALI and indicate that these integrINS could be a potentially attractive therapeutic target in ALI.
Abstract: Interleukin (IL)-1beta has previously been shown to be among the most biologically active cytokines in the lungs of patients with acute lung injury (ALI). Furthermore, there is experimental evidence that lung vascular permeability increases after short-term exposure to IL-1 protein, although the exact mechanism is unknown. Therefore, the objective of this study was to determine the mechanisms of IL-1beta-mediated increase in lung vascular permeability and pulmonary edema following transient overexpression of this cytokine in the lungs by adenoviral gene transfer. Lung vascular permeability increased with intrapulmonary IL-1beta production with a maximal effect 7 days after instillation of the adenovirus. Furthermore, inhibition of the alphavbeta6 integrin and/or transforming growth factor-beta attenuated the IL-1beta-induced ALI. The results of in vitro studies indicated that IL-1beta caused the activation of transforming growth factor-beta via RhoA/alphavbeta6 integrin-dependent mechanisms and the inhibition of the alphavbeta6 integrin and/or transforming growth factor-beta signaling completely blocked the IL-1beta-mediated protein permeability across alveolar epithelial cell monolayers. In addition, IL-1beta increased protein permeability across lung endothelial cell monolayers via RhoA- and alphavbeta5 integrin-dependent mechanisms. The final series of in vivo experiments demonstrated that pretreatment with blocking antibodies to both the alphavbeta5 and alphavbeta6 integrins had an additive protective effect against IL-1beta-induced ALI. In summary, these results demonstrate a critical role for the alphavbeta5/beta6 integrins in mediating the IL-1beta-induced ALI and indicate that these integrins could be a potentially attractive therapeutic target in ALI.

200 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the differential diagnosis of obstructive lung disease, including lesions that may mimic COPD, as well as the tools on which the clinician relies for a proper diagnosis.

167 citations

Journal ArticleDOI
TL;DR: It is demonstrated that injurious mechanical ventilation rapidly activates alveolar macrophages and that alveolars play an important role in the initial pathogenesis of VILI.
Abstract: In patients requiring mechanical ventilation for acute lung injury or acute respiratory distress syndrome (ARDS), tidal volume reduction decreases mortality, but the mechanisms of the protective effect have not been fully explored. To test the hypothesis that alveolar macrophage activation is an early and critical event in the initiation of ventilator-induced lung injury (VILI), rats were ventilated with high tidal volume (HV(T)) for 10 min to 4 h. Alveolar macrophage counts in bronchoalveolar lavage (BAL) fluid decreased 45% by 20 min of HV(T) (P < 0.05) consistent with activation-associated adhesion. Depletion of alveolar macrophages in vivo with liposomal clodronate significantly decreased permeability and pulmonary edema following 4 h of HV(T) (P < 0.05). BAL fluid from rats exposed to 20 min of HV(T) increased nitric oxide synthase activity nearly threefold in naive primary alveolar macrophages (P < 0.05) indicating that soluble factors present in the air spaces contribute to macrophage activation in VILI. Media from cocultures of alveolar epithelial cell monolayers and alveolar macrophages exposed to 30 min of stretch in vitro also significantly increased nitrite production in naive macrophages (P < 0.05), but media from stretched alveolar epithelial cells or primary alveolar macrophages alone did not, suggesting alveolar epithelial cell-macrophage interaction was required for the subsequent macrophage activation observed. These data demonstrate that injurious mechanical ventilation rapidly activates alveolar macrophages and that alveolar macrophages play an important role in the initial pathogenesis of VILI.

167 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This document summarizes current research, plans, and recommendations for future research, as well as providing a history of the field and some of the techniques used, currently in use, at the National Institutes of Health.
Abstract: Jeffrey L. Anderson, MD, FACC, FAHA, Chair Jonathan L. Halperin, MD, FACC, FAHA, Chair-Elect Nancy M. Albert, PhD, RN, FAHA Biykem Bozkurt, MD, PhD, FACC, FAHA Ralph G. Brindis, MD, MPH, MACC Mark A. Creager, MD, FACC, FAHA[#][1] Lesley H. Curtis, PhD, FAHA David DeMets, PhD[#][1] Robert A

6,967 citations

Journal ArticleDOI
TL;DR: Recent advances have uncovered mechanisms by which the intestinal mucosal barrier is regulated in response to physiological and immunological stimuli, along with evidence that this regulation shapes mucosal immune responses in the gut and, when dysfunctional, may contribute to disease.
Abstract: Mucosal surfaces are lined by epithelial cells. These cells establish a barrier between sometimes hostile external environments and the internal milieu. However, mucosae are also responsible for nutrient absorption and waste secretion, which require a selectively permeable barrier. These functions place the mucosal epithelium at the centre of interactions between the mucosal immune system and luminal contents, including dietary antigens and microbial products. Recent advances have uncovered mechanisms by which the intestinal mucosal barrier is regulated in response to physiological and immunological stimuli. Here I discuss these discoveries along with evidence that this regulation shapes mucosal immune responses in the gut and, when dysfunctional, may contribute to disease.

2,795 citations

Book ChapterDOI
TL;DR: It is apparent that a combination of molecular and cellular approaches targeting multiple pathologic processes to limit the extent of I/R injury must be adopted to enhance resistance to cell death and increase regenerative capacity in order to effect long-lasting repair of ischemic tissues.
Abstract: Disorders characterized by ischemia/reperfusion (I/R), such as myocardial infarction, stroke, and peripheral vascular disease, continue to be among the most frequent causes of debilitating disease and death. Tissue injury and/or death occur as a result of the initial ischemic insult, which is determined primarily by the magnitude and duration of the interruption in the blood supply, and then subsequent damage induced by reperfusion. During prolonged ischemia, ATP levels and intracellular pH decrease as a result of anaerobic metabolism and lactate accumulation. As a consequence, ATPase-dependent ion transport mechanisms become dysfunctional, contributing to increased intracellular and mitochondrial calcium levels (calcium overload), cell swelling and rupture, and cell death by necrotic, necroptotic, apoptotic, and autophagic mechanisms. Although oxygen levels are restored upon reperfusion, a surge in the generation of reactive oxygen species occurs and proinflammatory neutrophils infiltrate ischemic tissues to exacerbate ischemic injury. The pathologic events induced by I/R orchestrate the opening of the mitochondrial permeability transition pore, which appears to represent a common end-effector of the pathologic events initiated by I/R. The aim of this treatise is to provide a comprehensive review of the mechanisms underlying the development of I/R injury, from which it should be apparent that a combination of molecular and cellular approaches targeting multiple pathologic processes to limit the extent of I/R injury must be adopted to enhance resistance to cell death and increase regenerative capacity in order to effect long-lasting repair of ischemic tissues.

1,565 citations

Journal ArticleDOI
TL;DR: Progress has been made in understanding the mechanisms responsible for the pathogenesis and the resolution of lung injury, including the contribution of environmental and genetic factors, and on developing novel therapeutics that can facilitate and enhance lung repair.
Abstract: The acute respiratory distress syndrome (ARDS) is an important cause of acute respiratory failure that is often associated with multiple organ failure. Several clinical disorders can precipitate ARDS, including pneumonia, sepsis, aspiration of gastric contents, and major trauma. Physiologically, ARDS is characterized by increased permeability pulmonary edema, severe arterial hypoxemia, and impaired carbon dioxide excretion. Based on both experimental and clinical studies, progress has been made in understanding the mechanisms responsible for the pathogenesis and the resolution of lung injury, including the contribution of environmental and genetic factors. Improved survival has been achieved with the use of lung-protective ventilation. Future progress will depend on developing novel therapeutics that can facilitate and enhance lung repair.

1,506 citations

Journal ArticleDOI
TL;DR: The goal of this review is to summarize the strengths and weaknesses of existing models of lung injury and help guide investigators in the design and interpretation of animal studies of acute lung injury.
Abstract: Acute lung injury in humans is characterized histopathologically by neutrophilic alveolitis, injury of the alveolar epithelium and endothelium, hyaline membrane formation, and microvascular thrombi. Different animal models of experimental lung injury have been used to investigate mechanisms of lung injury. Most are based on reproducing in animals known risk factors for ARDS, such as sepsis, lipid embolism secondary to bone fracture, acid aspiration, ischemia-reperfusion of pulmonary or distal vascular beds, and other clinical risks. However, none of these models fully reproduces the features of human lung injury. The goal of this review is to summarize the strengths and weaknesses of existing models of lung injury. We review the specific features of human ARDS that should be modeled in experimental lung injury and then discuss specific characteristics of animal species that may affect the pulmonary host response to noxious stimuli. We emphasize those models of lung injury that are based on reproducing risk factors for human ARDS in animals and discuss the advantages and disadvantages of each model and the extent to which each model reproduces human ARDS. The present review will help guide investigators in the design and interpretation of animal studies of acute lung injury.

1,453 citations