scispace - formally typeset
Search or ask a question
Author

James A. McCubrey

Bio: James A. McCubrey is an academic researcher from East Carolina University. The author has contributed to research in topics: PI3K/AKT/mTOR pathway & Protein kinase B. The author has an hindex of 82, co-authored 426 publications receiving 27026 citations. Previous affiliations of James A. McCubrey include DuPont & University of Texas MD Anderson Cancer Center.


Papers
More filters
Journal ArticleDOI
TL;DR: The Raf/MEK/ERK pathway has different effects on growth, prevention of apoptosis, cell cycle arrest and induction of drug resistance in cells of various lineages which may be due to the presence of functional p53 and PTEN and the expression of lineage specific factors.

2,096 citations

Journal ArticleDOI
01 Mar 2003-Leukemia
TL;DR: The PI3K/Akt signal transduction cascade has been investigated extensively for its roles in oncogenic transformation as mentioned in this paper, and the potential for cancer treatment with agents inhibiting this pathway is also addressed.
Abstract: The PI3K/Akt signal transduction cascade has been investigated extensively for its roles in oncogenic transformation. Initial studies implicated both PI3K and Akt in prevention of apoptosis. However, more recent evidence has also associated this pathway with regulation of cell cycle progression. Uncovering the signaling network spanning from extracellular environment to the nucleus should illuminate biochemical events contributing to malignant transformation. Here, we discuss PI3K/Akt-mediated signal transduction including its mechanisms of activation, signal transducing molecules, and effects on gene expression that contribute to tumorigenesis. Effects of PI3K/Akt signaling on important proteins controlling cellular proliferation are emphasized. These targets include cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors. Furthermore, strategies used to inhibit the PI3K/Akt pathway are presented. The potential for cancer treatment with agents inhibiting this pathway is also addressed.

1,105 citations

Journal ArticleDOI
TL;DR: ABT-737 effectively kills acute myeloid leukemia blast, progenitor, and stem cells without affecting normal hematopoietic cells, suggesting that ABT- 737 could be a highly effective antileukemia agent when the mechanisms of resistance identified here are considered.

978 citations

Journal ArticleDOI
20 Jun 2003-Leukemia
TL;DR: The current understanding of the Ras/Raf/MEK/ERK signal transduction pathway and the downstream transcription factors is summarized and the prospects of targeting this pathway for therapeutic intervention in leukemia and other cancers will be evaluated.
Abstract: The Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) cascade couples signals from cell surface receptors to transcription factors, which regulate gene expression. Depending upon the stimulus and cell type, this pathway can transmit signals, which result in the prevention or induction of apoptosis or cell cycle progression. Thus, it is an appropriate pathway to target for therapeutic intervention. This pathway becomes more complex daily, as there are multiple members of the kinase and transcription factor families, which can be activated or inactivated by protein phosphorylation. The diversity of signals transduced by this pathway is increased, as different family members heterodimerize to transmit different signals. Furthermore, additional signal transduction pathways interact with the Raf/MEK/ERK pathway to regulate positively or negatively its activity, or to alter the phosphorylation status of downstream targets. Abnormal activation of this pathway occurs in leukemia because of mutations at Ras as well as genes in other pathways (eg PI3K, PTEN, Akt), which serve to regulate its activity. Dysregulation of this pathway can result in autocrine transformation of hematopoietic cells since cytokine genes such as interleukin-3 and granulocyte/macrophage colony-stimulating factor contain the transacting binding sites for the transcription factors regulated by this pathway. Inhibitors of Ras, Raf, MEK and some downstream targets have been developed and many are currently in clinical trials. This review will summarize our current understanding of the Ras/Raf/MEK/ERK signal transduction pathway and the downstream transcription factors. The prospects of targeting this pathway for therapeutic intervention in leukemia and other cancers will be evaluated.

723 citations

Journal ArticleDOI
TL;DR: This review summarizes findings for the ERK, JNK, p38, and BMK1 pathways to provide the reader with an overall understanding and appreciation of oxidative stress-induced MAPK signaling.
Abstract: An abundance of scientific literature exists demonstrating that oxidative stress influences the MAPK signaling pathways. This review summarizes these findings for the ERK, JNK, p38, and BMK1 pathways. For each of these different MAPK signaling pathways, the following is reviewed: the proteins involved in the signaling pathways, how oxidative stress can activate cellular signaling via these pathways, the types of oxidative stress that are known to induce activation of the different pathways, and the specific cell types in which oxidants induce MAPK responses. In addition, the functional outcome of oxidative stress-induced activation of these pathways is discussed. The purpose of this review is to provide the reader with an overall understanding and appreciation of oxidative stress-induced MAPK signaling.

705 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Observations to date suggest that oxidative stress, chronic inflammation, and cancer are closely linked.

3,922 citations

Journal ArticleDOI
TL;DR: Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt.
Abstract: In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.

3,641 citations

Journal ArticleDOI
TL;DR: There are now unprecedented opportunities to understand and overcome drug resistance through the clinical assessment of rational therapeutic drug combinations and the use of predictive biomarkers to enable patient stratification.
Abstract: Resistance to chemotherapy and molecularly targeted therapies is a major problem facing current cancer research. The mechanisms of resistance to 'classical' cytotoxic chemotherapeutics and to therapies that are designed to be selective for specific molecular targets share many features, such as alterations in the drug target, activation of prosurvival pathways and ineffective induction of cell death. With the increasing arsenal of anticancer agents, improving preclinical models and the advent of powerful high-throughput screening techniques, there are now unprecedented opportunities to understand and overcome drug resistance through the clinical assessment of rational therapeutic drug combinations and the use of predictive biomarkers to enable patient stratification.

3,514 citations

Journal ArticleDOI
TL;DR: The role of membrane vesicles, in particular exosomes, in the communication between immune cells, and between tumour and immune cells is focused on.
Abstract: In multicellular organisms, communication between cells mainly involves the secretion of proteins that then bind to receptors on neighbouring cells But another mode of intercellular communication - the release of membrane vesicles - has recently become the subject of increasing interest Membrane vesicles are complex structures composed of a lipid bilayer that contains transmembrane proteins and encloses soluble hydrophilic components derived from the cytosol of the donor cell These vesicles have been shown to affect the physiology of neighbouring recipient cells in various ways, from inducing intracellular signalling following binding to receptors to conferring new properties after the acquisition of new receptors, enzymes or even genetic material from the vesicles This Review focuses on the role of membrane vesicles, in particular exosomes, in the communication between immune cells, and between tumour and immune cells

3,441 citations

Journal ArticleDOI
TL;DR: A senescence-associated secretory phenotype (SASP) is acquired that turns senescent fibroblasts into proinflammatory cells that have the ability to promote tumor progression.
Abstract: Cellular senescence is a tumor-suppressive mechanism that permanently arrests cells at risk for malignant transformation. However, accumulating evidence shows that senescent cells can have deleterious effects on the tissue microenvironment. The most significant of these effects is the acquisition of a senescence-associated secretory phenotype (SASP) that turns senescent fibroblasts into proinflammatory cells that have the ability to promote tumor progression.

3,332 citations