scispace - formally typeset
Search or ask a question
Author

James A. Rand

Bio: James A. Rand is an academic researcher from GE Energy Infrastructure. The author has contributed to research in topics: Silicon & Solar cell. The author has an hindex of 16, co-authored 81 publications receiving 2011 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the optical reflectance of the silicon nanowire solar cells is reduced by one to two orders of magnitude compared to planar cells, and a promising current density of ∼1.6mA∕cm2 for 1.8cm2 cells was obtained, with a broad external quantum efficiency of ∼12% at 690nm.
Abstract: Silicon nanowire-based solar cells on metal foil are described. The key benefits of such devices are discussed, followed by optical reflectance, current-voltage, and external quantum efficiency data for a cell design employing a thin amorphous silicon layer deposited on the nanowire array to form the p-n junction. A promising current density of ∼1.6mA∕cm2 for 1.8cm2 cells was obtained, and a broad external quantum efficiency was measured with a maximum value of ∼12% at 690nm. The optical reflectance of the silicon nanowire solar cells is reduced by one to two orders of magnitude compared to planar cells.

997 citations

Journal ArticleDOI
TL;DR: The broadband optical absorption properties of silicon nanowire (SiNW) films fabricated on glass substrates by wet etching and chemical vapor deposition (CVD) have been measured and found to be higher than solid thin films of equivalent thickness.
Abstract: The broadband optical absorption properties of silicon nanowire (SiNW) films fabricated on glass substrates by wet etching and chemical vapor deposition (CVD) have been measured and found to be higher than solid thin films of equivalent thickness. The observed behavior is adequately explained by light scattering and light trapping though some of the observed absorption is due to a high density of surface states in the nanowires films, as evidenced by the partial reduction in high residual sub-bandgap absorption after hydrogen passivation. Finite difference time domain simulations show strong resonance within and between the nanowires in a vertically oriented array and describe the experimental absorption data well. These structures may be of interest in optical films and optoelectronic device applications.

320 citations

Patent
02 May 1989
TL;DR: In this article, a thin-film photovoltaic solar cell features a thin polycrystalline silicon active semiconductor formed over a conductive ceramic substrate, which provides reflection of light, minimizes back surface recombination and prevents contamination of the active semiconductors.
Abstract: A thin-film photovoltaic solar cell features a thin polycrystalline silicon active semiconductor formed over a conductive ceramic substrate. Between the substrate and the adjacent active semiconductor layer is a barrier layer which provides for reflection of light, minimizes back surface recombination and prevents contamination of the active semiconductor.

99 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of grain boundaries (GB) in polycrystalline sheet silicon on impurity gettering and oxygen precipitation were investigated by electron beam induced current (EBIC), deep level transient spectroscopy (DLTS), micro-Fourier transform infrared spectrograms (FTIR), and preferential etching/Normaski optical microscopy techniques.
Abstract: The effects of grain boundaries (GB) in polycrystalline sheet silicon on impurity gettering and oxygen precipitation were investigated by electron beam induced current (EBIC), deep level transient spectroscopy (DLTS), micro-Fourier-transform infrared spectroscopy (FTIR), and preferential etching/Normaski optical microscopy techniques. Both as-grown and thermally processed wafers were studied. A correlation between GB density and transition metal concentration was quantitatively established by combining DLTS and EBIC studies. It was found that four deep levels arising from Fe–B, Fe–Al, Cr–B, and Fei were present in the as-grown sample, and their concentrations decrease with increasing GB density. GB gettering was further verified by the presence of an EBIC image contrast halo around the GB. Preferential etching also revealed a precipitate density of 2×107 cm−2 on the GB. After processing, a clearly defined oxygen precipitate denuded zone formed around the GB with the interstitial oxygen concentration [Oi] decreased from 14.4 to 2.2×1017 cm−3. Micro-FTIR showed that, for both processed and as-grown samples, more silicon oxynitride appears in the GB than in the intragrain region. Since nitrogen enhances oxygen precipitation, it is likely that nitrogen preferentially precipitated on the GB during the wafer formation process and resulted in a nitrogen depletion zone, where oxygen precipitation was further suppressed and a denuded zone formed.

65 citations

Patent
12 May 1992
TL;DR: In this paper, a plurality of thin polycrystalline silicon solar cells formed on a ceramic substrate and which are electrically series connected to form a monolithically interconnected submodule are presented.
Abstract: A plurality of thin polycrystalline silicon solar cells formed on a ceramic substrate and which are electrically series connected to form a monolithically interconnected submodule. Adjacent solar cells are electrically separated by a vertical trench and electrically connected by interconnects located below the light receiving surface of each solar cell. The submodules are provided with external electrical contacts for electrically connecting into a photovoltaic module assembly.

58 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the photovoltaic technology, its power generating capability, the different existing light absorbing materials used, its environmental aspect coupled with a variety of its applications have been discussed.
Abstract: Global environmental concerns and the escalating demand for energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Solar energy is the most abundant, inexhaustible and clean of all the renewable energy resources till date. The power from sun intercepted by the earth is about 1.8 × 1011 MW, which is many times larger than the present rate of all the energy consumption. Photovoltaic technology is one of the finest ways to harness the solar power. This paper reviews the photovoltaic technology, its power generating capability, the different existing light absorbing materials used, its environmental aspect coupled with a variety of its applications. The different existing performance and reliability evaluation models, sizing and control, grid connection and distribution have also been discussed. © 2011 Published by Elsevier Ltd.

1,524 citations

Journal ArticleDOI
TL;DR: The observed absorption enhancement and collection efficiency enable a cell geometry that not only uses 1/100th the material of traditional wafer-based devices, but also may offer increased photovoltaic efficiency owing to an effective optical concentration of up to 20 times.
Abstract: The use of silicon nanostructures in solar cells offers a number of benefits, such as the fact they can be used on flexible substrates. A silicon wire-array structure, containing reflecting nanoparticles for enhanced absorption, is now shown to achieve 96% peak absorption efficiency, capturing 85% of light with only 1% of the silicon used in comparable commercial cells. Si wire arrays are a promising architecture for solar-energy-harvesting applications, and may offer a mechanically flexible alternative to Si wafers for photovoltaics1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17. To achieve competitive conversion efficiencies, the wires must absorb sunlight over a broad range of wavelengths and incidence angles, despite occupying only a modest fraction of the array’s volume. Here, we show that arrays having less than 5% areal fraction of wires can achieve up to 96% peak absorption, and that they can absorb up to 85% of day-integrated, above-bandgap direct sunlight. In fact, these arrays show enhanced near-infrared absorption, which allows their overall sunlight absorption to exceed the ray-optics light-trapping absorption limit18 for an equivalent volume of randomly textured planar Si, over a broad range of incidence angles. We furthermore demonstrate that the light absorbed by Si wire arrays can be collected with a peak external quantum efficiency of 0.89, and that they show broadband, near-unity internal quantum efficiency for carrier collection through a radial semiconductor/liquid junction at the surface of each wire. The observed absorption enhancement and collection efficiency enable a cell geometry that not only uses 1/100th the material of traditional wafer-based devices, but also may offer increased photovoltaic efficiency owing to an effective optical concentration of up to 20 times.

1,346 citations

Journal ArticleDOI
TL;DR: It is discovered that the thermoconductivity of the silicon nanowires can be significantly reduced due to phonon scattering, pointing to a very promising approach to design better thermoelectrical materials.
Abstract: Semiconductor nanowires represent an important class of nanostructure building block for photovoltaics as well as direct solar-to-fuel application because of their high surface area, tunable bandgap and efficient charge transport and collection. In this talk, I will highlight several recent examples in this lab using semiconductor nanowires and their heterostructures for the purpose of solar energy harvesting. In addition, we have also discovered that the thermoconductivity of the silicon nanowires can be significantly reduced due to phonon scattering, pointing to a very promising approach to design better thermoelectrical materials. It is important to note that the engines that generate most of the world's power typically operate at only 30–40 per cent efficiency, releasing roughly 15 terawatts of heat to the environment. If this “wasted heat” could be recycled, the impact globally would be enormous. Our silicon nanowire thermoelectric technology could have a significant impact in alternative energy generation.

1,306 citations

Journal ArticleDOI
TL;DR: The direct growth of highly regular, single-crystalline nanopillar arrays of optically active semiconductors on aluminium substrates that are then configured as solar-cell modules for enabling highly versatile solar modules on both rigid and flexible substrates with enhanced carrier collection efficiency arising from the geometric configuration of the nanopillars.
Abstract: Solar energy represents one of the most abundant and yet least harvested sources of renewable energy. In recent years, tremendous progress has been made in developing photovoltaics that can be potentially mass deployed. Of particular interest to cost-effective solar cells is to use novel device structures and materials processing for enabling acceptable efficiencies. In this regard, here, we report the direct growth of highly regular, single-crystalline nanopillar arrays of optically active semiconductors on aluminium substrates that are then configured as solar-cell modules. As an example, we demonstrate a photovoltaic structure that incorporates three-dimensional, single-crystalline n-CdS nanopillars, embedded in polycrystalline thin films of p-CdTe, to enable high absorption of light and efficient collection of the carriers. Through experiments and modelling, we demonstrate the potency of this approach for enabling highly versatile solar modules on both rigid and flexible substrates with enhanced carrier collection efficiency arising from the geometric configuration of the nanopillars.

1,061 citations

Journal ArticleDOI
TL;DR: In this paper, the optical reflectance of the silicon nanowire solar cells is reduced by one to two orders of magnitude compared to planar cells, and a promising current density of ∼1.6mA∕cm2 for 1.8cm2 cells was obtained, with a broad external quantum efficiency of ∼12% at 690nm.
Abstract: Silicon nanowire-based solar cells on metal foil are described. The key benefits of such devices are discussed, followed by optical reflectance, current-voltage, and external quantum efficiency data for a cell design employing a thin amorphous silicon layer deposited on the nanowire array to form the p-n junction. A promising current density of ∼1.6mA∕cm2 for 1.8cm2 cells was obtained, and a broad external quantum efficiency was measured with a maximum value of ∼12% at 690nm. The optical reflectance of the silicon nanowire solar cells is reduced by one to two orders of magnitude compared to planar cells.

997 citations