scispace - formally typeset
Search or ask a question
Author

James A. Ritter

Bio: James A. Ritter is an academic researcher from University of South Carolina. The author has contributed to research in topics: Adsorption & Pressure swing adsorption. The author has an hindex of 49, co-authored 192 publications receiving 8161 citations. Previous affiliations of James A. Ritter include University at Buffalo & Westinghouse Electric.


Papers
More filters
Journal ArticleDOI
TL;DR: A brief overview on the preparation and properties of resorcinol-formaldehyde organic and carbon gels reveals very interesting features about their structural and performance characteristics as mentioned in this paper, which leads to a remarkable potential for designing and tailoring these materials to fit specific applications.
Abstract: A brief overview on the preparation and properties of resorcinol–formaldehyde organic and carbon gels reveals very interesting features about their structural and performance characteristics. The resulting nanostructure was very sensitive to the various synthesis and processing conditions. This leads to a remarkable potential for designing and tailoring these materials to fit specific applications. Based on step-by-step comparisons of the published studies, approximate generalizations on the specific roles the synthesis and processing conditions play on the final properties are provided. Overall, resorcinol–formaldehyde organic gels undergo two main stages during synthesis. The first stage is associated with the preparation of the sol mixture, and the subsequent gelation and curing of the gel. The second stage is associated with the drying of the wet gel. The most important factors that affect the properties of the organic gel during the first stage are the catalyst concentration, the initial gel pH, and the concentration of the solids in the sol. The most important factors that affect the properties of the organic gel during the second stage are the drying procedure (e.g., super- or subcritical drying), and the difference between the surface tensions of the solvent before and after drying. The corresponding resorcinol–formaldehyde carbon gels are produced from the organic gels during a third stage, which is associated with carbonization or activation. Depending on the conditions, carbonization and activation both impact the structural and performance characteristics significantly.

911 citations

Journal ArticleDOI
TL;DR: Very fine cobalt oxide xerogel powders were prepared using a unique solution chemistry associated with the sol-gel process as mentioned in this paper, and the effect of thermal treatment on the surrace area, pore volume, crystallinity, particle structure, and corresponding electrochemical properties was investigated and found to have significant effects on all of these properties.
Abstract: Very fine cobalt oxide xerogel powders were prepared using a unique solution chemistry associated with the sol-gel process The effect of thermal treatment on the surrace area, pore volume, crystallinity, particle structure, and corresponding electrochemical properties of the resulting xerogels was investigated and found to have significant effects on all of these properties The xerogel remained amorphous as Co(OH) 2 up to 160°C, and exhibited maxima in both the surface area and pore volume at this temperature With an increase in the temperature above 200°C, both the surface area and pore volume decreased sharply, because the amorphous Co(OH) 2 decomposed to form CoO that was subsequently oxidized to form crystalline Co 3 O 4 In addition, the changes in the surface area, pore volume, crystallinity, and particle structure all had significant but coupled effects on the electrochemical properties of the xerogels A maximum capacitance of 291 F/g was obtained for an electrode prepared with the CoO x xerogel calcined at 150°C, which was consistent with the maxima exhibited in both the surface area and pore volume; this capacitance was attributed solely to a surface redox mechanism The cycle life of this electrode was also very stable for many thousands of cycles

441 citations

Journal ArticleDOI
01 Jan 1997-Carbon
TL;DR: In this article, mesoporous carbon xerogels were prepared from the sol-gel polymerization of resorcinol with formaldehyde (RF) followed by carbonization.

346 citations

Journal ArticleDOI
TL;DR: In this article, a complex impedance model for spherical particles was used to determine the lithium ion diffusion coefficient in graphite as a function of the state of charge (SOC) and temperature.
Abstract: A complex impedance model for spherical particles was used to determine the lithium ion diffusion coefficient in graphite as a function of the state of charge (SOC) and temperature. The values obtained range from 1.12 {times} 10{sup {minus}10} to 6.51 {times} 10{sup {minus}11} cm{sup 2}/s at 25 C for 0 and 30% SOC, respectively, and for 0% SOC, the value at 55 C was 1.35 {times} 10{sup {minus}10} cm{sup 2}/s. The conventional potentiostatic intermittent titration technique (PITT) and Warburg impedance approaches were also evaluated, and the advantages and disadvantages of these techniques were exposed.

341 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a detailed review of the current commercial CO2 separation technologies, i.e., absorption, adsorption, membrane, and cryogenic, an overview of the em...
Abstract: With the growing concern about global warming placing greater demands on improving energy efficiency and reducing CO2 emissions, the need for improving the energy intensive, separation processes involving CO2 is well recognized. The US Department of Energy estimates that the separation of CO2 represents 75% of the cost associated with its separation, storage, transport, and sequestration operations. Hence, energy efficient, CO2 separation technologies with improved economics are needed for industrial processing and for future options to capture and concentrate CO2 for reuse or sequestration. The overall goal of this review is to foster the development of new adsorption and membrane technologies to improve manufacturing efficiency and reduce CO2 emissions. This study focuses on the power, petrochemical, and other CO2 emitting industries, and provides a detailed review of the current commercial CO2 separation technologies, i.e., absorption, adsorption, membrane, and cryogenic, an overview of the em...

279 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations

Journal ArticleDOI
TL;DR: Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density.
Abstract: In this critical review, metal oxides-based materials for electrochemical supercapacitor (ES) electrodes are reviewed in detail together with a brief review of carbon materials and conducting polymers. Their advantages, disadvantages, and performance in ES electrodes are discussed through extensive analysis of the literature, and new trends in material development are also reviewed. Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density of ES (476 references).

7,642 citations

Journal ArticleDOI
TL;DR: This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorbents in rigid and flexible MOFs, and primary relationships between adsorptive properties and framework features are analyzed.
Abstract: Adsorptive separation is very important in industry. Generally, the process uses porous solid materials such as zeolites, activated carbons, or silica gels as adsorbents. With an ever increasing need for a more efficient, energy-saving, and environmentally benign procedure for gas separation, adsorbents with tailored structures and tunable surface properties must be found. Metal–organic frameworks (MOFs), constructed by metal-containing nodes connected by organic bridges, are such a new type of porous materials. They are promising candidates as adsorbents for gas separations due to their large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability. This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorption in rigid and flexible MOFs. Based on possible mechanisms, selective adsorptions observed in MOFs are classified, and primary relationships between adsorption properties and framework features are analyzed. As a specific example of tailor-made MOFs, mesh-adjustable molecular sieves are emphasized and the underlying working mechanism elucidated. In addition to the experimental aspect, theoretical investigations from adsorption equilibrium to diffusion dynamics via molecular simulations are also briefly reviewed. Furthermore, gas separations in MOFs, including the molecular sieving effect, kinetic separation, the quantum sieving effect for H2/D2 separation, and MOF-based membranes are also summarized (227 references).

7,186 citations

Journal ArticleDOI
TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

5,389 citations

Journal ArticleDOI
TL;DR: This Review introduces several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage, and the current status of high-performance hydrogen storage materials for on-board applications and electrochemicals for lithium-ion batteries and supercapacitors.
Abstract: [Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China.;Cheng, HM (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China;cheng@imr.ac.cn

4,105 citations