scispace - formally typeset
Search or ask a question
Author

James A. Voigt

Bio: James A. Voigt is an academic researcher from Sandia National Laboratories. The author has contributed to research in topics: Nanorod & Thin film. The author has an hindex of 30, co-authored 83 publications receiving 6992 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: By combining electron paramagnetic resonance (EPR), optical absorption, and photoluminescence (PL) spectroscopy, a strong correlation is observed between the green 510 nm emission, the free-carrier concentration, and the density of singly ionized oxygen vacancies in commercial ZnO phosphor powders as mentioned in this paper.
Abstract: By combining electron paramagnetic resonance (EPR), optical absorption, and photoluminescence (PL) spectroscopy, a strong correlation is observed between the green 510 nm emission, the free‐carrier concentration, and the density of singly ionized oxygen vacancies in commercial ZnO phosphor powders. From these results, we demonstrate that free‐carrier depletion at the particle surface, and its effect on the ionization state of the oxygen vacancy, can strongly impact the green emission intensity. The relevance of these observations with respect to low‐voltage field emission displays is discussed.

1,888 citations

Journal ArticleDOI
TL;DR: This work reports a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology.
Abstract: Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.

1,396 citations

Journal ArticleDOI
TL;DR: The morphology generated in the helical ZnO nanostructure shows remarkable resemblance to the growth morphology of nacreous calcium carbonate and thus may shed new light on morphology and orientation control of biominerals.
Abstract: Extended helical or chiral nanostructures are usually associated with biomolecules but are mostly absent in synthetic materials. Here we report the first synthesis of unusual oriented and extended helical nanostructures in synthetic ceramics. Large arrays of oriented helical ZnO nanorods and columns are formed using simple citrate ions to control the growth habits of the ZnO crystal. This novel mechanism could lead to new approaches to control the orientation, the surface area, and the defect structure of synthetic materials that are critical for practical applications. The morphology generated in the helical ZnO nanostructure shows remarkable resemblance to the growth morphology of nacreous calcium carbonate and thus may shed new light on morphology and orientation control of biominerals.

472 citations

Journal ArticleDOI
TL;DR: In this article, the effect of polymer processing parameters, solvent selection, and thermal annealing on poly(3hexylthiophene) (P3HT)/ZnO nanorod photovoltaic devices was investigated.
Abstract: Effective infiltration of the polymer into the nanostructured oxide is critical for optimizing the performance of hybrid π-conjugated polymer/nanostructured metal oxide semiconductor photovoltaic devices. We investigated the effect of polymer processing parameters, solvent selection, and thermal annealing on poly(3-hexylthiophene) (P3HT)/ZnO nanorod photovoltaic devices and found that these play an important role in the degree of polymer infiltration and the subsequent device performance. We demonstrate that using dichlorobenzene as a solvent produced better performance devices than using chloroform. In addition, the infiltration of P3HT into the ZnO nanorod array has been improved through annealing and subsequent slow cooling. Time-resolved microwave conductivity studies reveal an increase in the photoconductivity of the composite devices with annealing, resulting from changes in both the polymer and ZnO. The device performance was shown to increase with enhanced infiltration, and the devices that had be...

244 citations

Journal ArticleDOI
TL;DR: A detailed review of the use of multistage, seeded-growth methods to synthesize a wide range of nanostructures, including oriented nanowires, nanotubes, and nanoneedles, is given in this paper.
Abstract: Nanostructured films with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy/chemical conversions. Low-temperature, aqueous chemical routes have been widely investigated for the synthesis of continuous films, and arrays of oriented nanorods and nanotubes. More recently, aqueous-phase routes have been used to produce films composed of more complex crystal structures. In this paper, we discuss recent progress in the synthesis of complex nanostructures through sequential nucleation and growth processes. We first review the use of multistage, seeded-growth methods to synthesize a wide range of nanostructures, including oriented nanowires, nanotubes, and nanoneedles, as well as laminated films, columns, and multilayer heterostructures. We then describe more recent work on the application of sequential nucleation and growth to the systematic assembly of large arrays of hierarchical, complex, oriented, and ordered crystal architectures. The multistage aqueous chemical route is shown to be applicable to several technologically important materials, and therefore may play a key role in advancing complex nanomaterials into applications.

223 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors explore the interrelationships between the green 510 nm emission, the free-carrier concentration, and the paramagnetic oxygen vacancy density in commercial ZnO phosphors by combining photoluminescence, optical absorption, and electron paramagnetic resonance spectroscopies.
Abstract: We explore the interrelationships between the green 510 nm emission, the free‐carrier concentration, and the paramagnetic oxygen‐vacancy density in commercial ZnO phosphors by combining photoluminescence, optical‐absorption, and electron‐paramagnetic‐resonance spectroscopies. We find that the green emission intensity is strongly influenced by free‐carrier depletion at the particle surface, particularly for small particles and/or low doping. Our data suggest that the singly ionized oxygen vacancy is responsible for the green emission in ZnO; this emission results from the recombination of a photogenerated hole with the singly ionized charge state of this defect.

3,487 citations

Journal ArticleDOI
TL;DR: An outlook is presented on what will be required to drive this young photovoltaic technology towards the next major milestone, a 10% power conversion efficiency, considered by many to represent the efficiency at which OPV can be adopted in wide-spread applications.
Abstract: Solution-processed bulk-heterojunction solar cells have gained serious attention during the last few years and are becoming established as one of the future photovoltaic technologies for low-cost power production. This article reviews the highlights of the last few years, and summarizes today's state-of-the-art performance. An outlook is given on relevant future materials and technologies that have the potential to guide this young photovoltaic technology towards the magic 10% regime. A cost model supplements the technical discussions, with practical aspects any photovoltaic technology needs to fulfil, and answers to the question as to whether low module costs can compensate lower lifetimes and performances.

3,084 citations

Journal ArticleDOI
TL;DR: A facile, hydrothermal method was developed for the first time to grow oriented, single-crystalline rutile TiO(2) nanorod films on transparent conductive fluorine-doped tin oxide (FTO) substrates.
Abstract: Dye-sensitized solar cells (DSSCs) made from oriented, one-dimensional semiconductor nanostructures such as nanorods, nanowires, and nanotubes are receiving attention because direct connection of the point of photogeneration with the collection electrode using such structures may improve the cell performance. Specifically, oriented single-crystalline TiO2 nanorods or nanowires on a transparent conductive substrate would be most desirable, but achieving these structures has been limited by the availability of synthetic techniques. In this study, a facile, hydrothermal method was developed for the first time to grow oriented, single-crystalline rutile TiO2 nanorod films on transparent conductive fluorine-doped tin oxide (FTO) substrates. The diameter, length, and density of the nanorods could be varied by changing the growth parameters, such as growth time, growth temperature, initial reactant concentration, acidity, and additives. The epitaxial relation between the FTO substrate and rutile TiO2 with a smal...

2,254 citations

Journal ArticleDOI
06 Apr 2007-Science
TL;DR: A nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output and offers a potential solution for powering nanodevices and nanosystems.
Abstract: We have developed a nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output. The nanogenerator was fabricated with vertically aligned zinc oxide nanowire arrays that were placed beneath a zigzag metal electrode with a small gap. The wave drives the electrode up and down to bend and/or vibrate the nanowires. A piezoelectric-semiconducting coupling process converts mechanical energy into electricity. The zigzag electrode acts as an array of parallel integrated metal tips that simultaneously and continuously create, collect, and output electricity from all of the nanowires. The approach presents an adaptable, mobile, and cost-effective technology for harvesting energy from the environment, and it offers a potential solution for powering nanodevices and nanosystems.

2,127 citations

Journal ArticleDOI
TL;DR: The photoluminescence (PL) spectra of undoped ZnO films deposited on Si substrates by dc reactive sputtering have been studied in this paper, where two emission peaks, centered at 3.18 eV and 2.38 eV, were found to correspond to oxide antisite defect OZn rather than oxygen vacancy VO, zinc vacancy VZn, interstitial zinc Zni, and interstitial oxygen Oi.
Abstract: The photoluminescence (PL) spectra of the undoped ZnO films deposited on Si substrates by dc reactive sputtering have been studied. There are two emission peaks, centered at 3.18 eV (UV) and 2.38 eV (green). The variation of these peak intensities and that of the I–V properties of the ZnO/Si heterojunctions were investigated at different annealing temperatures and atmospheres. The defect levels in ZnO films were also calculated using the method of full-potential linear muffin-tin orbital. It is concluded that the green emission corresponds to the local level composed by oxide antisite defect OZn rather than oxygen vacancy VO, zinc vacancy VZn, interstitial zinc Zni, and interstitial oxygen Oi.

1,923 citations