scispace - formally typeset
Search or ask a question
Author

James A. Warren

Bio: James A. Warren is an academic researcher from National Institute of Standards and Technology. The author has contributed to research in topics: Grain boundary & Phase (matter). The author has an hindex of 38, co-authored 101 publications receiving 7120 citations. Previous affiliations of James A. Warren include Silver Spring Networks & University of California, Santa Barbara.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the phase-field method for modeling solidification is presented, together with several example results as mentioned in this paper, which has been applied to a wide variety of problems including dendritic, eutectic, and peritectic growth in alloys; and solute trapping during rapid solidification.
Abstract: ▪ Abstract An overview of the phase-field method for modeling solidification is presented, together with several example results. Using a phase-field variable and a corresponding governing equation to describe the state (solid or liquid) in a material as a function of position and time, the diffusion equations for heat and solute can be solved without tracking the liquid-solid interface. The interfacial regions between liquid and solid involve smooth but highly localized variations of the phase-field variable. The method has been applied to a wide variety of problems including dendritic growth in pure materials; dendritic, eutectic, and peritectic growth in alloys; and solute trapping during rapid solidification.

1,431 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive model for solving the heat and solute diffusion equations during solidification that avoids tracking the liquid-solid interface is developed, where the bulk liquid and solid phases are treated as regular solutions and an order parameter (the phase field) is introduced to describe the interfacial region between them.
Abstract: A comprehensive model is developed for solving the heat and solute diffusion equations during solidification that avoids tracking the liquid—solid interface. The bulk liquid and solid phases are treated as regular solutions and an order parameter (the phase field) is introduced to describe the interfacial region between them. Two-dimensional computations are performed for ideal solutions and for dendritic growth into an isothermal and highly supersaturated liquid phase. The dependence upon various material and computational parameters, including the approach to conventional sharp interface theories, is investigated. Realistic growth patterns are obtained that include the development, coarsening, and coalescence of secondary and tertiary dendrite arms. Microsegregation patterns are examined and compared for different values of the solid diffusion coefficient.

653 citations

Journal ArticleDOI
TL;DR: The entire range of observed spherulite morphologies can be reproduced by this generalized phase field model of polycrystalline growth, which describes and explores three physically prevalent sources of disorder that lead to this kind of growth.
Abstract: Many structural materials (metal alloys, polymers, minerals, etc.) are formed by quenching liquids into crystalline solids. This highly nonequilibrium process often leads to polycrystalline growth patterns that are broadly termed "spherulites" because of their large-scale average spherical shape. Despite the prevalence and practical importance of spherulite formation, only rather qualitative concepts of this phenomenon exist. It is established that phase field methods naturally account for diffusional instabilities that are responsible for dendritic single-crystal growth. However, a generalization of this model is required to describe spherulitic growth patterns, and in the present paper we propose a minimal model of this fundamental crystal growth process. Our calculations indicate that the diversity of spherulitic growth morphologies arises from a competition between the ordering effect of discrete local crystallographic symmetries and the randomization of the local crystallographic orientation that accompanies crystal grain nucleation at the growth front [growth front nucleation (GFN)]. This randomization in the orientation accounts for the isotropy of spherulitic growth at large length scales and long times. In practice, many mechanisms can give rise to GFN, and the present work describes and explores three physically prevalent sources of disorder that lead to this kind of growth. While previous phase field modeling elucidated two of these mechanisms--disorder created by particulate impurities or other static disorder or by the dynamic heterogeneities that spontaneously form in supercooled liquids (even pure ones)--the present paper considers an additional mechanism, crystalline branching induced by a misorientation-dependent grain boundary energy, which can significantly affect spherulite morphology. We find the entire range of observed spherulite morphologies can be reproduced by this generalized phase field model of polycrystalline growth.

449 citations

Journal ArticleDOI
TL;DR: Many existing partial differential equation solver packages focus on the important, but arcane, task of numerically solving the linearized set of algebraic equations that result from discretizing a set of PDEs.
Abstract: Many existing partial differential equation solver packages focus on the important, but arcane, task of numerically solving the linearized set of algebraic equations that result from discretizing a set of PDEs. Many researchers, however, need something higher level than that.

373 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional frame-invariant phase field model of grain boundaries is developed, and one-dimensional analytical solutions for a stable grain boundary in a bicrystal are obtained, and equilibrium energies are computed.

338 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: The radical-mediated thiol-ene reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield.
Abstract: Following Sharpless' visionary characterization of several idealized reactions as click reactions, the materials science and synthetic chemistry communities have pursued numerous routes toward the identification and implementation of these click reactions. Herein, we review the radical-mediated thiol-ene reaction as one such click reaction. This reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield. Further, the thiol-ene reaction is most frequently photoinitiated, particularly for photopolymerizations resulting in highly uniform polymer networks, promoting unique capabilities related to spatial and temporal control of the click reaction. The reaction mechanism and its implementation in various synthetic methodologies, biofunctionalization, surface and polymer modification, and polymerization are all reviewed.

3,229 citations

Journal ArticleDOI
TL;DR: The phase-field method has recently emerged as a powerful computational approach to modeling and predicting mesoscale morphological and microstructure evolution in materials as discussed by the authors, which is able to predict the evolution of arbitrary morphologies and complex microstructures without explicitly tracking the positions of interfaces.
Abstract: ■ Abstract The phase-field method has recently emerged as a powerful computational approach to modeling and predicting mesoscale morphological and microstructure evolution in materials. It describes a microstructure using a set of conserved and nonconserved field variables that are continuous across the interfacial regions. The temporal and spatial evolution of the field variables is governed by the Cahn-Hilliard nonlinear diffusion equation and the Allen-Cahn relaxation equation. With the fundamental thermodynamic and kinetic information as the input, the phase-field method is able to predict the evolution of arbitrary morphologies and complex microstructures without explicitly tracking the positions of interfaces. This paper briefly reviews the recent advances in developing phase-field models for various materials processes including solidification, solid-state structural phase transformations, grain growth and coarsening, domain evolution in thin films, pattern formation on surfaces, dislocation microstructures, crack propagation, and electromigration.

2,334 citations