scispace - formally typeset
Search or ask a question
Author

James Analytis

Bio: James Analytis is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Topological insulator & Fermi surface. The author has an hindex of 56, co-authored 182 publications receiving 14949 citations. Previous affiliations of James Analytis include University of California & Florida State University.


Papers
More filters
Journal ArticleDOI
10 Jul 2009-Science
TL;DR: The results establish that Bi2Te3 is a simple model system for the three-dimensional topological insulator with a single Dirac cone on the surface, and points to promising potential for high-temperature spintronics applications.
Abstract: Three-dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. By investigating the surface state of Bi2Te3 with angle-resolved photoemission spectroscopy, we demonstrate that the surface state consists of a single nondegenerate Dirac cone. Furthermore, with appropriate hole doping, the Fermi level can be tuned to intersect only the surface states, indicating a full energy gap for the bulk states. Our results establish that Bi2Te3 is a simple model system for the three-dimensional topological insulator with a single Dirac cone on the surface. The large bulk gap of Bi2Te3 also points to promising potential for high-temperature spintronics applications.

2,823 citations

Journal ArticleDOI
06 Aug 2010-Science
TL;DR: In this article, the authors introduced magnetic dopants into the three-dimensional topological insulator dibismuth triselenide (Bi2Se3) to break the time reversal symmetry and further position the Fermi energy inside the gaps by simultaneous magnetic and charge doping.
Abstract: In addition to a bulk energy gap, topological insulators accommodate a conducting, linearly dispersed Dirac surface state. This state is predicted to become massive if time reversal symmetry is broken, and to become insulating if the Fermi energy is positioned inside both the surface and bulk gaps. We introduced magnetic dopants into the three-dimensional topological insulator dibismuth triselenide (Bi2Se3) to break the time reversal symmetry and further position the Fermi energy inside the gaps by simultaneous magnetic and charge doping. The resulting insulating massive Dirac fermion state, which we observed by angle-resolved photoemission, paves the way for studying a range of topological phenomena relevant to both condensed matter and particle physics.

1,000 citations

Journal ArticleDOI
13 Aug 2010-Science
TL;DR: It is revealed that the representative iron arsenide Ba(Fe1−xCox)2As2 develops a large electronic anisotropy at this transition via measurements of the in-plane resistivity of detwinned single crystals, with the resistivity along the shorter b axis ρb being greater than ρa.
Abstract: High-temperature superconductivity often emerges in the proximity of a symmetry-breaking ground state. For superconducting iron arsenides, in addition to the antiferromagnetic ground state, a small structural distortion breaks the crystal’s C 4 rotational symmetry in the underdoped part of the phase diagram. We reveal that the representative iron arsenide Ba(Fe 1 −x Co x ) 2 As 2 develops a large electronic anisotropy at this transition via measurements of the in-plane resistivity of detwinned single crystals, with the resistivity along the shorter b axis ρ b being greater than ρ a . The anisotropy reaches a maximum value of ~2 for compositions in the neighborhood of the beginning of the superconducting dome. For temperatures well above the structural transition, uniaxial stress induces a resistivity anisotropy, indicating a substantial nematic susceptibility.

627 citations

Journal ArticleDOI
TL;DR: For an ideal topological insulator, the metallic surface states should be easy to measure using transport techniques; however, the bulk is not completely insulating as mentioned in this paper, and improving the "leaky" bulk state proves crucial for measuring the surface Dirac fermions, including correlation effects.
Abstract: For an ideal topological insulator, the metallic surface states should be easy to measure using transport techniques; however, the bulk is not completely insulating. Improving the ‘leaky’ bulk state proves crucial for measuring the surface Dirac fermions, including correlation effects.

579 citations

Journal ArticleDOI
30 Apr 2015-Nature
TL;DR: Wang et al. as mentioned in this paper used near-field optical imaging and low-temperature transport measurements to reveal that topological valley polarized modes do exist in bilayer graphene domain walls.
Abstract: The bandgap of bilayer graphene can be tuned with an electric field and topological valley polarized modes have been predicted to exist at its domain boundaries; here, near-field infrared imaging and low-temperature transport measurements reveal such modes in gapped bilayer graphene. Bilayer graphene offers an interesting platform in which to observe novel electronic effects that are different to those in monolayer graphene because the bilayer has a bandgap that can be tuned with an electric field. Moreover, topological valley polarized modes have been predicted to exist at its domain boundaries and in this study Feng Wang and colleagues use near-field optical imaging and low-temperature transport measurements to reveal that such modes do exist in in gapped bilayer graphene. This finding opens up the possibility to explore topological states in bilayer graphene that can be tuned with an electric field. Electron valley, a degree of freedom that is analogous to spin, can lead to novel topological phases in bilayer graphene. A tunable bandgap can be induced in bilayer graphene by an external electric field1,2,3,4,5, and such gapped bilayer graphene is predicted to be a topological insulating phase protected by no-valley mixing symmetry, featuring quantum valley Hall effects and chiral edge states6,7,8,9. Observation of such chiral edge states, however, is challenging because inter-valley scattering is induced by atomic-scale defects at real bilayer graphene edges10. Recent theoretical work11,12,13 has shown that domain walls between AB- and BA-stacked bilayer graphene can support protected chiral edge states of quantum valley Hall insulators. Here we report an experimental observation of ballistic (that is, with no scattering of electrons) conducting channels at bilayer graphene domain walls. We employ near-field infrared nanometre-scale microscopy (nanoscopy)14,15,16 to image in situ bilayer graphene layer-stacking domain walls on device substrates, and we fabricate dual-gated field effect transistors based on the domain walls. Unlike single-domain bilayer graphene, which shows gapped insulating behaviour under a vertical electrical field, bilayer graphene domain walls feature one-dimensional valley-polarized conducting channels with a ballistic length of about 400 nanometres at 4 kelvin. Such topologically protected one-dimensional chiral states at bilayer graphene domain walls open up opportunities for exploring unique topological phases and valley physics in graphene.

531 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Abstract: Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

11,092 citations

Journal ArticleDOI
05 Mar 2018-Nature
TL;DR: The realization of intrinsic unconventional superconductivity is reported—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle.
Abstract: The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

5,613 citations

Journal ArticleDOI
26 Mar 2013-ACS Nano
TL;DR: The properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications are highlighted.
Abstract: Graphene’s success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in...

4,123 citations