scispace - formally typeset
Search or ask a question
Author

James Arthos

Bio: James Arthos is an academic researcher from National Institutes of Health. The author has contributed to research in topics: T cell & Antibody. The author has an hindex of 52, co-authored 134 publications receiving 12693 citations. Previous affiliations of James Arthos include Columbia University & Government of the United States of America.
Topics: T cell, Antibody, Epitope, Virus, Viral replication


Papers
More filters
Journal ArticleDOI
14 Nov 1996-Nature
TL;DR: CD4 binding, although not absolutely necessary for the gp120–CCR-5 interaction, greatly increases its efficiency, and interference with HIV-1 binding to one or both of its receptors (CD4 and CCR-5) may be an important mechanism of virus neutralization.
Abstract: The beta-chemokine receptor CCR-5 is an essential co-factor for fusion of HIV-1 strains of the non-syncytium-inducing (NSI) phenotype with CD4+ T-cells. The primary binding site for human immunodeficiency virus (HIV)-1 is the CD4 molecule, and the interaction is mediated by the viral surface glycoprotein gp120 (refs 6, 7). The mechanism of CCR-5 function during HIV-1 entry has not been defined, but we have shown previously that its beta-chemokine ligands prevent HIV-1 from fusing with the cell. We therefore investigated whether CCR-5 acts as a second binding site for HIV-1 simultaneously with or subsequent to the interaction between gp120 and CD4. We used a competition assay based on gp120 inhibition of the binding of the CCR-5 ligand, macrophage inflammatory protein (MIP)-1beta, to its receptor on activated CD4+ T cells or CCR-5-positive CD4- cells. We conclude that CD4 binding, although not absolutely necessary for the gp120-CCR-5 interaction, greatly increases its efficiency. Neutralizing monoclonal antibodies against several sites on gp120, including the V3 loop and CD4-induced epitopes, inhibited the interaction of gp120 with CCR-5, without affecting gp120-CD4 binding. Interference with HIV-1 binding to one or both of its receptors (CD4 and CCR-5) may be an important mechanism of virus neutralization.

1,113 citations

Journal ArticleDOI
12 Dec 2002-Nature
TL;DR: It is shown that recognition by receptor-binding-site antibodies induces conformational change, and conformational masking enables HIV-1 to maintain receptor binding and simultaneously to resist neutralization.
Abstract: The ability of human immunodeficiency virus (HIV-1) to persist and cause AIDS is dependent on its avoidance of antibody-mediated neutralization. The virus elicits abundant, envelope-directed antibodies that have little neutralization capacity. This lack of neutralization is paradoxical, given the functional conservation and exposure of receptor-binding sites on the gp120 envelope glycoprotein, which are larger than the typical antibody footprint and should therefore be accessible for antibody binding. Because gp120-receptor interactions involve conformational reorganization, we measured the entropies of binding for 20 gp120-reactive antibodies. Here we show that recognition by receptor-binding-site antibodies induces conformational change. Correlation with neutralization potency and analysis of receptor-antibody thermodynamic cycles suggested a receptor-binding-site 'conformational masking' mechanism of neutralization escape. To understand how such an escape mechanism would be compatible with virus-receptor interactions, we tested a soluble dodecameric receptor molecule and found that it neutralized primary HIV-1 isolates with great potency, showing that simultaneous binding of viral envelope glycoproteins by multiple receptors creates sufficient avidity to compensate for such masking. Because this solution is available for cell-surface receptors but not for most antibodies, conformational masking enables HIV-1 to maintain receptor binding and simultaneously to resist neutralization.

904 citations

Journal ArticleDOI
15 Dec 2011-Nature
TL;DR: The structure of V1/V2 in complex with PG9 is reported, identifying a paradigm of antibody recognition for highly glycosylated antigens, which—with PG9—involves a site of vulnerability comprising just two glycans and a strand.
Abstract: Variable regions 1 and 2 (V1/V2) of human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein are critical for viral evasion of antibody neutralization, and are themselves protected by extraordinary sequence diversity and N-linked glycosylation. Human antibodies such as PG9 nonetheless engage V1/V2 and neutralize 80% of HIV-1 isolates. Here we report the structure of V1/V2 in complex with PG9. V1/V2 forms a four-stranded β-sheet domain, in which sequence diversity and glycosylation are largely segregated to strand-connecting loops. PG9 recognition involves electrostatic, sequence-independent and glycan interactions: the latter account for over half the interactive surface but are of sufficiently weak affinity to avoid autoreactivity. The structures of V1/V2-directed antibodies CH04 and PGT145 indicate that they share a common mode of glycan penetration by extended anionic loops. In addition to structurally defining V1/V2, the results thus identify a paradigm of antibody recognition for highly glycosylated antigens, which-with PG9-involves a site of vulnerability comprising just two glycans and a strand.

832 citations

Journal ArticleDOI
15 Feb 2007-Nature
TL;DR: A site of vulnerability, related to a functional requirement for efficient association with CD4, can therefore be targeted by antibody to neutralize HIV-1.
Abstract: The remarkable diversity, glycosylation and conformational flexibility of the human immunodeficiency virus type 1 (HIV-1) envelope (Env), including substantial rearrangement of the gp120 glycoprotein upon binding the CD4 receptor, allow it to evade antibody-mediated neutralization. Despite this complexity, the HIV-1 Env must retain conserved determinants that mediate CD4 binding. To evaluate how these determinants might provide opportunities for antibody recognition, we created variants of gp120 stabilized in the CD4-bound state, assessed binding of CD4 and of receptor-binding-site antibodies, and determined the structure at 2.3 A resolution of the broadly neutralizing antibody b12 in complex with gp120. b12 binds to a conformationally invariant surface that overlaps a distinct subset of the CD4-binding site. This surface is involved in the metastable attachment of CD4, before the gp120 rearrangement required for stable engagement. A site of vulnerability, related to a functional requirement for efficient association with CD4, can therefore be targeted by antibody to neutralize HIV-1.

794 citations

Journal ArticleDOI
TL;DR: HIV-associated premature exhaustion of B cells may contribute to poor antibody responses against HIV in infected individuals, and strikingly, HIV- specific responses were enriched in these exhausted tissuelike memory B cells, whereas total immunoglobulin and influenza-specific responses were enrichment in classical memory B Cells.
Abstract: Human immunodeficiency virus (HIV) disease leads to impaired B cell and antibody responses through mechanisms that remain poorly defined. A unique memory B cell subpopulation (CD20hi/CD27lo/CD21lo) in human tonsillar tissues was recently defined by the expression of the inhibitory receptor Fc-receptor-like-4 (FCRL4). In this study, we describe a similar B cell subpopulation in the blood of HIV-viremic individuals. FCRL4 expression was increased on B cells of HIV-viremic compared with HIV-aviremic and HIV-negative individuals. It was enriched on B cells with a tissuelike memory phenotype (CD20hi/CD27−/CD21lo) when compared with B cells with a classical memory (CD27+) or naive (CD27−/CD21hi) B cell phenotype. Tissuelike memory B cells expressed patterns of homing and inhibitory receptors similar to those described for antigen-specific T cell exhaustion. The tissuelike memory B cells proliferated poorly in response to B cell stimuli, which is consistent with high-level expression of multiple inhibitory receptors. Immunoglobulin diversities and replication histories were lower in tissuelike, compared with classical, memory B cells, which is consistent with premature exhaustion. Strikingly, HIV-specific responses were enriched in these exhausted tissuelike memory B cells, whereas total immunoglobulin and influenza-specific responses were enriched in classical memory B cells. These data suggest that HIV-associated premature exhaustion of B cells may contribute to poor antibody responses against HIV in infected individuals.

782 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
Abstract: DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.

31,015 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: DAMID is a web-accessible program that integrates functional genomic annotations with intuitive graphical summaries that assists in the interpretation of genome-scale datasets by facilitating the transition from data collection to biological meaning.
Abstract: The distributed nature of biological knowledge poses a major challenge to the interpretation of genome-scale datasets, including those derived from microarray and proteomic studies. This report describes DAVID, a web-accessible program that integrates functional genomic annotations with intuitive graphical summaries. Lists of gene or protein identifiers are rapidly annotated and summarized according to shared categorical data for Gene Ontology, protein domain, and biochemical pathway membership. DAVID assists in the interpretation of genome-scale datasets by facilitating the transition from data collection to biological meaning.

8,849 citations

Journal ArticleDOI
TL;DR: This review introduces the burgeoning family of cytokines, with special emphasis on their role in the pathophysiology of disease and their potential as targets for therapy.
Abstract: The attraction of leukocytes to tissues is essential for inflammation and the host response to infection. The process is controlled by chemokines, which are chemotactic cytokines. This review introduces the burgeoning family of cytokines, with special emphasis on their role in the pathophysiology of disease and their potential as targets for therapy. Structure and Function of Chemokines Over 40 chemokines have been identified to date, most of them in the past few years. The relations among chemokines were not initially appreciated, which led to an idiosyncratic nomenclature consisting of many acronyms. When initially identified, these proteins had no known biologic . . .

3,653 citations

Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations