scispace - formally typeset
Search or ask a question
Author

James Bailey

Other affiliations: University of London, Simon Fraser University, Deakin University  ...read more
Bio: James Bailey is an academic researcher from University of Melbourne. The author has contributed to research in topics: Cluster analysis & Adaptive control. The author has an hindex of 46, co-authored 377 publications receiving 10283 citations. Previous affiliations of James Bailey include University of London & Simon Fraser University.


Papers
More filters
Journal ArticleDOI
TL;DR: An organized study of information theoretic measures for clustering comparison, including several existing popular measures in the literature, as well as some newly proposed ones, and advocates the normalized information distance (NID) as a general measure of choice.
Abstract: Information theoretic measures form a fundamental class of measures for comparing clusterings, and have recently received increasing interest. Nevertheless, a number of questions concerning their properties and inter-relationships remain unresolved. In this paper, we perform an organized study of information theoretic measures for clustering comparison, including several existing popular measures in the literature, as well as some newly proposed ones. We discuss and prove their important properties, such as the metric property and the normalization property. We then highlight to the clustering community the importance of correcting information theoretic measures for chance, especially when the data size is small compared to the number of clusters present therein. Of the available information theoretic based measures, we advocate the normalized information distance (NID) as a general measure of choice, for it possesses concurrently several important properties, such as being both a metric and a normalized measure, admitting an exact analytical adjusted-for-chance form, and using the nominal [0,1] range better than other normalized variants.

1,818 citations

Proceedings ArticleDOI
14 Jun 2009
TL;DR: This paper derives the analytical formula for the expected mutual information value between a pair of clusterings, and proposes the adjusted version for several popular information theoretic based measures.
Abstract: Information theoretic based measures form a fundamental class of similarity measures for comparing clusterings, beside the class of pair-counting based and set-matching based measures. In this paper, we discuss the necessity of correction for chance for information theoretic based measures for clusterings comparison. We observe that the baseline for such measures, i.e. average value between random partitions of a data set, does not take on a constant value, and tends to have larger variation when the ratio between the number of data points and the number of clusters is small. This effect is similar in some other non-information theoretic based measures such as the well-known Rand Index. Assuming a hypergeometric model of randomness, we derive the analytical formula for the expected mutual information value between a pair of clusterings, and then propose the adjusted version for several popular information theoretic based measures. Some examples are given to demonstrate the need and usefulness of the adjusted measures.

748 citations

Proceedings ArticleDOI
01 Jan 2019
TL;DR: The proposed Symmetric cross entropy Learning (SL) approach simultaneously addresses both the under learning and overfitting problem of CE in the presence of noisy labels, and empirically shows that SL outperforms state-of-the-art methods.
Abstract: Training accurate deep neural networks (DNNs) in the presence of noisy labels is an important and challenging task. Though a number of approaches have been proposed for learning with noisy labels, many open issues remain. In this paper, we show that DNN learning with Cross Entropy (CE) exhibits overfitting to noisy labels on some classes (``easy" classes), but more surprisingly, it also suffers from significant under learning on some other classes (``hard" classes). Intuitively, CE requires an extra term to facilitate learning of hard classes, and more importantly, this term should be noise tolerant, so as to avoid overfitting to noisy labels. Inspired by the symmetric KL-divergence, we propose the approach of Symmetric cross entropy Learning (SL), boosting CE symmetrically with a noise robust counterpart Reverse Cross Entropy (RCE). Our proposed SL approach simultaneously addresses both the under learning and overfitting problem of CE in the presence of noisy labels. We provide a theoretical analysis of SL and also empirically show, on a range of benchmark and real-world datasets, that SL outperforms state-of-the-art methods. We also show that SL can be easily incorporated into existing methods in order to further enhance their performance.

535 citations

Posted Content
TL;DR: The analysis of the LID characteristic for adversarial regions not only motivates new directions of effective adversarial defense, but also opens up more challenges for developing new attacks to better understand the vulnerabilities of DNNs.
Abstract: Deep Neural Networks (DNNs) have recently been shown to be vulnerable against adversarial examples, which are carefully crafted instances that can mislead DNNs to make errors during prediction. To better understand such attacks, a characterization is needed of the properties of regions (the so-called 'adversarial subspaces') in which adversarial examples lie. We tackle this challenge by characterizing the dimensional properties of adversarial regions, via the use of Local Intrinsic Dimensionality (LID). LID assesses the space-filling capability of the region surrounding a reference example, based on the distance distribution of the example to its neighbors. We first provide explanations about how adversarial perturbation can affect the LID characteristic of adversarial regions, and then show empirically that LID characteristics can facilitate the distinction of adversarial examples generated using state-of-the-art attacks. As a proof-of-concept, we show that a potential application of LID is to distinguish adversarial examples, and the preliminary results show that it can outperform several state-of-the-art detection measures by large margins for five attack strategies considered in this paper across three benchmark datasets. Our analysis of the LID characteristic for adversarial regions not only motivates new directions of effective adversarial defense, but also opens up more challenges for developing new attacks to better understand the vulnerabilities of DNNs.

425 citations

Proceedings Article
30 Apr 2020
TL;DR: This paper proposes a new defense algorithm called MART, which explicitly differentiates the misclassified and correctly classified examples during the training, and shows that MART and its variant could significantly improve the state-of-the-art adversarial robustness.
Abstract: Deep neural networks (DNNs) are vulnerable to adversarial examples crafted by imperceptible perturbations. A range of defense techniques have been proposed to improve DNN robustness to adversarial examples, among which adversarial training has been demonstrated to be the most effective. Adversarial training is often formulated as a min-max optimization problem, with the inner maximization for generating adversarial examples. However, there exists a simple, yet easily overlooked fact that adversarial examples are only defined on correctly classified (natural) examples, but inevitably, some (natural) examples will be misclassified during training. In this paper, we investigate the distinctive influence of misclassified and correctly classified examples on the final robustness of adversarial training. Specifically, we find that misclassified examples indeed have a significant impact on the final robustness. More surprisingly, we find that different maximization techniques on misclassified examples may have a negligible influence on the final robustness, while different minimization techniques are crucial. Motivated by the above discovery, we propose a new defense algorithm called {\em Misclassification Aware adveRsarial Training} (MART), which explicitly differentiates the misclassified and correctly classified examples during the training. We also propose a semi-supervised extension of MART, which can leverage the unlabeled data to further improve the robustness. Experimental results show that MART and its variant could significantly improve the state-of-the-art adversarial robustness.

382 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2002

9,314 citations