scispace - formally typeset
Search or ask a question
Author

James C. Gilliland

Bio: James C. Gilliland is an academic researcher. The author has contributed to research in topics: Ferromolybdenum & Molybdenum. The author has an hindex of 1, co-authored 1 publications receiving 32 citations.

Papers
More filters
Reference EntryDOI
21 May 2020
TL;DR: In this article, the authors present a survey of the Molybdenum chemistry and its application in various areas of industry, such as mining, automotive, agriculture, and economic aspects.
Abstract: The article contains sections titled: 1. Introduction 2. Properties 3. Occurrence 3.1. Minerals 3.2. Deposits 4. Production 4.1. Concentration 4.2. Processing of Concentrate 4.3. Recovery from Spent Petroleum Catalysts 4.4. Recovery during Production of Tungsten Ores 4.5. Production of Molybdenum Metal Powder 4.6. Production of Compact Molybdenum Metal 4.7. Processing of Molybdenum 4.8. Molybdenum-Base Alloys 5. Uses 6. Production of Ferromolybdenum 6.1. Ferromolybdenum Grades 6.2. Raw Materials 6.3. Submerged Arc Furnace Carbothermic Reduction 6.4. Metallothermic Reduction 7. Molybdenum Compounds 7.1. Overview of Molybdenum Chemistry 7.2. Molybdenum Oxides 7.3. Molybdenum Chalcogenides 7.4. Molybdenum Halides 7.5. Molybdates, Isopolymolybdates, and Heteropolymolybdates 7.6. Other Molybdenum Compounds 8. Uses of Molybdenum Compounds 8.1. Catalysis 8.2. Lubrication 8.3. Corrosion Inhibition 8.4. Flame Retardancy and Smoke Suppression 8.5. Pigments 8.6. Agriculture 9. Analysis 10. Economic Aspects 11. Environmental Aspects 12. Toxicology and Occupational Health

35 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive overview of the synthesis, structural polytypes, properties, and applications of bulk, few layer, and single layer MoS2 can be found in this article, where the single layer form has shown significant potential as a semiconductor analogue of graphene.
Abstract: Molybdenum disulphide (MoS2) has been one of the most interesting materials for scientists and engineers for a long time. While its bulk form has been in use in conventional industries as an intercalation agent and a dry lubricant for many years, its two-dimensional forms have attracted growing attention in recent years for applications in nano-electronic applications. Specifically, the single layer form of MoS2 shows significant potential as a semiconductor analogue of graphene. These exciting applications are spread over many fields, from flexible and transparent transistor devices, to low-power, high efficiency biological and chemical sensing applications. This Review Article, for the first time, provides a comprehensive overview of the synthesis, structural polytypes, properties, and applications of bulk, few layer, and single layer MoS2.

293 citations

Journal ArticleDOI
TL;DR: In this study, the acute and chronic effects of sodium molybdate and sodium dichromate to Daphnia magna Straus were evaluated and both toxicants inhibited AChE in vivo at concentrations under the respective 48-h LC(50) values.

73 citations

Journal ArticleDOI
TL;DR: In this article, the sources and distribution of Mo speciation in solution and Mo(VI) anions adsorption mechanisms in soils and bed sediments are reviewed and evaluated.
Abstract: Mo is an essential trace element for both plants and animals in low concentrations (<5 ppm). However, provoked by uncontrolled industrial waste releases in freshwater or seawater, it is plausible that excessive availability of soluble Mo(VI) would be potentially toxic. In the environment, soluble Mo(VI) is mainly present in anionic forms of molybdate (MoO4 2−) and/or tetrathiomolybdate (MoS4 2−). The fate and transport of soluble Mo(VI) anions in surface and subsurface aquatic environments is typically controlled by adsorption in acidic soils and sediment. As such, the ability of soils/bed sediments to retain Mo(VI) is a key to determine its general mobility in the aquatic environment. This article reviews the sources and distribution of Mo speciation in solution and Mo(VI) anions adsorption mechanisms in soils and bed sediments, and evaluates the surface adsorption complexation models at the solid-water interface to estimate Mo(VI) anions adsorption in these chemical systems. Mo(VI) anions adsorption mec...

67 citations

Journal ArticleDOI
TL;DR: In this article, the thermal behavior of ammonium molybdates was studied in inert (N2) and oxidizing (air) atmospheres by TG/DTA-MS, XRD, FTIR and SEM.
Abstract: The thermal behavior of ammonium molybdates, i.e., (NH4)6Mo7O24·4H2O (1) and (NH4)2MoO4 (2), was studied in inert (N2) and oxidizing (air) atmospheres by TG/DTA-MS, XRD, FTIR and SEM. The thermal decomposition sequence of 2 had similarities to 1; however, there were significant differences as well. When both of them were annealed, NH3 and H2O were released parallel, and in air the as-evolved NH3 was burnt partially into NO and N2O. In both atmospheres, while 1 decomposed in four steps, the thermal decomposition of 2 involved 5 steps. In the case of 1, the intermediate products were (NH4)8Mo10O34, (NH4)2Mo4O13 and h-MoO3. In contrast, the decomposition intermediates of 2 were (NH4)2Mo3O10, (NH4)2Mo2O7, (NH4)2Mo4O13 and h-MoO3. By both 1 and 2, the final product was dominated by o-MoO3, accompanied with small amount of Mo4O11 in N2, which was absent in air. Most decomposition steps were endothermic, except for the last step around 400 °C, where crystallization from the residual amorphous phase had an exothermic heat effect. In addition, the combustion of NH3 also changed the DTA curve into exothermic in some cases. The morphology of the final products was characterized by 1–5 μm sheet-like particles, except for annealing 2 in N2, when 0.5- to 1-μm-thick and 5- to 10-μm-long needle-shaped particles were detected.

55 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate two activation procedures for a MoS2/TiO2 model catalyst and show that when the activation is performed in two steps, by sequentially dosing first H2S followed by reduction in H2, a n intermediate Mo oxysulfide phase forms, leading finally to a 3-4 layers thick nano-MoS2 phase.

33 citations