scispace - formally typeset
Search or ask a question
Author

James D. Iversen

Bio: James D. Iversen is an academic researcher from Iowa State University. The author has contributed to research in topics: Wind tunnel & Saltation (geology). The author has an hindex of 28, co-authored 66 publications receiving 3495 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of both Reynolds number and interparticle forces of cohesion were used to predict threshold speeds for windblown dust and sand on Mars and Venus, and an optimum particle size was found for which threshold speed is a minimum.
Abstract: Attempts to predict threshold speeds for windblown dust and sand on Mars and Venus have raised new questions about the mechanism of soil and sand transport by wind. Estimates of threshold speeds on Mars and Venus are made including the effects of both Reynolds number and interparticle forces of cohesion. The current estimates show lower threshold speeds for small particles than previous estimates by Hess, who assumed that Reynolds number is the only important parameter. These estimates, on the other hand, show somewhat higher threshold speeds than those of Sagan and Bagnold, who assumed that the particles are cohesionless. An optimum particle size results, for which threshold speed is a minimum, contrary to Sagan and Bagnold's prediction.

88 citations

Journal ArticleDOI
01 Mar 1974-Science
TL;DR: Wind tunnel experiments have revealed a characteristic flow field pattern over raised-rim craters which causes distinctive zones of aeolian erosion and deposition, and comparisons with Mariner 9 images of Mars show that some crater-associated dark zones result from wind erosion and that some hole-associated light streaks are depositional.
Abstract: Wind tunnel experiments have revealed a characteristic flow field pattern over raised-rim craters which causes distinctive zones of aeolian erosion and deposition. Comparisons of the results with Mariner 9 images of Mars show that some crater-associated dark zones result from wind erosion and that some crater-associated light streaks are depositional.

80 citations

Journal ArticleDOI
TL;DR: In this article, the internal boundary layer over fixed arrays with roughness similar to the roughness of saltation of a sand bed was studied in a 15 m long horizontal wind tunnel.

75 citations

Journal ArticleDOI
TL;DR: In this paper, a correlation between the radar backscatter coefficient σ0 and the topographic roughness at the submeter scale was developed based on radar data obtained from aircraft (AIRSAR).
Abstract: Aerodynamic roughness (z0) is an important parameter in studies of sand and dust transport, as well as atmospheric circulation models. Aerodynamic roughness is a function of the size and spacing of surface roughness elements and is typically determined at point locations in the field from wind velocity profiles. Because field measurements require complex logistics, z0 values have been obtained for very few localities. If radar can be used to map z0, estimates can be obtained for large areas. In addition, because aerodynamic roughness can change in response to surface processes (e.g., flooding of alluvial surfaces), radar remote sensing could obtain new measurements on short timescales. Both z0 and the radar backscatter coefficient σ0 are dependent on topographic roughness at the submeter scale, and correlation between these two parameters was developed based on radar data obtained from aircraft (AIRSAR). The Spaceborne Radar Laboratory (SRL) afforded the opportunity to test the correlation for data obtained from orbit. SRL data for sites in Death Valley, California; Lunar Lake, Nevada; and Gobabeb, Namibia, were correlated with wind data and compared with previous radar z0 relations. Correlations between σ0 and z0 for L band (λ=24 cm) HV (H, vertically and V, vertically polarized modes) L band HH, and C band (λ=5.6 cm) HV compare favorably with previous studies. Based on these results, maps of z0 values were derived from SRL data for each site, demonstrating the potential to map z0 for large vegetation-free areas from orbit using radar systems.

70 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the dimensionless threshold friction speed for small particles is a continuous function of particle-to-fluid density ratio and an interparticle force term.
Abstract: Saltation threshold data from three wind tunnels and from hydraulic flumes are presented to show that the dimensionless threshold friction speed for small particles is a continuous function of particle-to-fluid-density ratio. In addition, the dimensionless threshold speed is a function of the grain-friction Reynolds number and an interparticle force term. The variation with density ratio seems to be due to the relative energy with which particles impact other particles to initiate saltation.

68 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the global distribution of dust aerosol is simulated with the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model.
Abstract: The global distribution of dust aerosol is simulated with the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. In this model all topographic lows with bare ground surface are assumed to have accumulated sediments which are potential dust sources. The uplifting of dust particles is expressed as a function of surface wind speed and wetness. The GOCART model is driven by the assimilated meteorological fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS) which facilitates direct comparison with observations. The model includes seven size classes of mineral dust ranging from 0.1–6 μm radius. The total annual emission is estimated to be between 1604 and 1960 Tg yr−1 in a 5-year simulation. The model has been evaluated by comparing simulation results with ground-based measurements and satellite data. The evaluation has been performed by comparing surface concentrations, vertical distributions, deposition rates, optical thickness, and size distributions. The comparisons show that the model results generally agree with the observations without the necessity of invoking any contribution from anthropogenic disturbances to soils. However, the model overpredicts the transport of dust from the Asian sources to the North Pacific. This discrepancy is attributed to an overestimate of small particle emission from the Asian sources.

1,767 citations

Journal ArticleDOI
TL;DR: In this article, a soil-derived dust emission scheme was designed to provide an explicit representation of the desert dust sources for the atmospheric transport models dealing with the simulation of the dust cycle.
Abstract: A soil-derived dust emission scheme has been designed to provide an explicit representation of the desert dust sources for the atmospheric transport models dealing with the simulation of the desert dust cycle. Two major factors characterizing the erodible surface are considered: (1) the size distribution of the erodible loose particles of the soil which controls the erosion threshold and the emission strength and (2) the surface roughness which imposes the efficient wind friction velocity acting on the erodible surface. These two parameters are included in a formulation of the threshold wind friction velocity by adapting a size-dependent parameterization proposed by Iversen and White (1982) and by applying to the rough erodible surfaces a drag partition scheme derived from Arya (1975). This parameterization of the threshold friction velocity has been included in an horizontal flux equation proposed by White (1979). This allows to attribute a specific production rate to each soil size range for each type of surface. The dust flux F is then considered as a fraction of the total horizontal flux G, the value of the ratio F/G being imposed, at this time, by the soil clay content. In summary, the computed mass fluxes depend on the soil size distribution, the roughness lengths, and the wind friction velocity. The different steps of this scheme have been independently validated by comparison with relevant experimental data. Globally, the agreement is satisfying, so that the dust fluxes could be retrieved with less uncertainties than those observed in previous simulations of the desert dust cycle.

1,244 citations

Journal ArticleDOI
TL;DR: The physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices are reviewed.
Abstract: The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols This article presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices We also discuss the physics of wind-blown sand and dune formation on Venus and Titan

1,175 citations

Journal ArticleDOI
TL;DR: The Context Camera (CTX) on the Mars Reconnaissance Orbiter (MRO) is a Facility Instrument (i.e., government-furnished equipment operated by a science team not responsible for design and fabrication) designed, built, and operated by Malin Space Science Systems and the MRO Mars Color Imager team (MARCI) as mentioned in this paper.
Abstract: [1] The Context Camera (CTX) on the Mars Reconnaissance Orbiter (MRO) is a Facility Instrument (i.e., government-furnished equipment operated by a science team not responsible for design and fabrication) designed, built, and operated by Malin Space Science Systems and the MRO Mars Color Imager team (MARCI). CTX will (1) provide context images for data acquired by other MRO instruments, (2) observe features of interest to NASA's Mars Exploration Program (e.g., candidate landing sites), and (3) conduct a scientific investigation, led by the MARCI team, of geologic, geomorphic, and meteorological processes on Mars. CTX consists of a digital electronics assembly; a 350 mm f/3.25 Schmidt-type telescope of catadioptric optical design with a 5.7° field of view, providing a ∼30-km-wide swath from ∼290 km altitude; and a 5000-element CCD with a band pass of 500–700 nm and 7 μm pixels, giving ∼6 m/pixel spatial resolution from MRO's nearly circular, nearly polar mapping orbit. Raw data are transferred to the MRO spacecraft flight computer for processing (e.g., data compression) before transmission to Earth. The ground data system and operations are based on 9 years of Mars Global Surveyor Mars Orbiter Camera on-orbit experience. CTX has been allocated 12% of the total MRO data return, or about ≥3 terabits for the nominal mission. This data volume would cover ∼9% of Mars at 6 m/pixel, but overlapping images (for stereo, mosaics, and observation of changes and meteorological events) will reduce this area. CTX acquired its first (instrument checkout) images of Mars on 24 March 2006.

1,111 citations

Journal ArticleDOI
TL;DR: In this article, an extensive review of the physics of wind-blown sand and dust on Earth and Mars is presented, including a review of aeolian saltation, the formation and development of sand dunes and ripples, dust aerosol emission, weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices.
Abstract: The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

1,069 citations