scispace - formally typeset
Search or ask a question
Author

James D. Nichols

Bio: James D. Nichols is an academic researcher from Patuxent Wildlife Research Center. The author has contributed to research in topics: Population & Occupancy. The author has an hindex of 92, co-authored 336 publications receiving 40738 citations. Previous affiliations of James D. Nichols include University of Florida & United States Geological Survey.


Papers
More filters
Journal ArticleDOI
01 Aug 2002-Ecology
TL;DR: In this paper, a model and likelihood-based method for estimating site occupancy rates when detection probabilities are 0.3 was proposed for American toads (Bufo americanus) and spring peepers (Pseudacris crucifer).
Abstract: Nondetection of a species at a site does not imply that the species is absent unless the probability of detection is 1. We propose a model and likelihood-based method for estimating site occupancy rates when detection probabilities are 0.3). We estimated site occupancy rates for two anuran species at 32 wetland sites in Maryland, USA, from data collected during 2000 as part of an amphibian monitoring program, Frogwatch USA. Site occupancy rates were estimated as 0.49 for American toads (Bufo americanus), a 44% increase over the proportion of sites at which they were actually observed, and as 0.85 for spring peepers (Pseudacris crucifer), slightly above the observed proportion of 0.83.

3,918 citations

Journal ArticleDOI
01 Aug 2003-Ecology
TL;DR: In this article, the authors present a model that enables direct estimation of these parameters when the probability of detecting the species is less than 1. The model does not require any assumptions of process stationarity, as do some previous methods, but does require detection/nondetection data to be collected in a manner similar to Pollock's robust design as used in mark-recapture studies.
Abstract: Few species are likely to be so evident that they will always be detected when present. Failing to allow for the possibility that a target species was present, but undetected, at a site will lead to biased estimates of site occupancy, colonization, and local extinction probabilities. These population vital rates are often of interest in long-term monitoring programs and metapopulation studies. We present a model that enables direct estimation of these parameters when the probability of detecting the species is less than 1. The model does not require any assumptions of process stationarity, as do some previous methods, but does require detection/nondetection data to be collected in a manner similar to Pollock's robust design as used in mark-recapture studies. Via simulation, we show that the model provides good estimates of parameters for most scenarios considered. We illustrate the method with data from monitoring programs of Northern Spotted Owls ( Strix occiden- talis caurina) in northern California and tiger salamanders (Ambystoma tigrinum) in Min- nesota, USA.

1,506 citations

Journal ArticleDOI
TL;DR: This work reviews recent developments in methods and designs that aim to integrate sources of error to provide unbiased estimates of change in biological diversity and to suggest the potential causes.
Abstract: Monitoring programmes are being used increasingly to assess spatial and temporal trends of biological diversity, with an emphasis on evaluating the efficiency of management policies. Recent reviews of the existing programmes, with a focus on their design in particular, have highlighted the main weaknesses: the lack of well-articulated objectives and the neglect of different sources of error in the estimation of biological diversity. We review recent developments in methods and designs that aim to integrate sources of error to provide unbiased estimates of change in biological diversity and to suggest the potential causes.

1,242 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: Mark as discussed by the authors provides parameter estimates from marked animals when they are re-encountered at a later time as dead recoveries, or live recaptures or re-sightings.
Abstract: MARK provides parameter estimates from marked animals when they are re-encountered at a later time as dead recoveries, or live recaptures or re-sightings. The time intervals between re-encounters do not have to be equal. More than one attribute group of animals can be modelled. The basic input to MARK is the encounter history for each animal. MARK can also estimate the size of closed populations. Parameters can be constrained to be the same across re-encounter occasions, or by age, or group, using the parameter index matrix. A set of common models for initial screening of data are provided. Time effects, group effects, time x group effects and a null model of none of the above, are provided for each parameter. Besides the logit function to link the design matrix to the parameters of the model, other link functions include the log—log, complimentary log—log, sine, log, and identity. The estimates of model parameters are computed via numerical maximum likelihood techniques. The number of parameters that are...

7,128 citations

Journal ArticleDOI
TL;DR: In this article, the authors suggest that the term "fragmentation" should be reserved for the breaking apart of habitat, independent of habitat loss, and that fragmentation per se has much weaker effects on biodiversity that are at least as likely to be positive as negative.
Abstract: ■ Abstract The literature on effects of habitat fragmentation on biodiversity is huge. It is also very diverse, with different authors measuring fragmentation in different ways and, as a consequence, drawing different conclusions regarding both the magnitude and direction of its effects. Habitat fragmentation is usually defined as a landscape-scale process involving both habitat loss and the breaking apart of habitat. Results of empirical studies of habitat fragmentation are often difficult to interpret because (a) many researchers measure fragmentation at the patch scale, not the landscape scale and (b) most researchers measure fragmentation in ways that do not distinguish between habitat loss and habitat fragmentation per se, i.e., the breaking apart of habitat after controlling for habitat loss. Empirical studies to date suggest that habitat loss has large, consistently negative effects on biodiversity. Habitat fragmentation per se has much weaker effects on biodiversity that are at least as likely to be positive as negative. Therefore, to correctly interpret the influence of habitat fragmentation on biodiversity, the effects of these two components of fragmentation must be measured independently. More studies of the independent effects of habitat loss and fragmentation per se are needed to determine the factors that lead to positive versus negative effects of fragmentation per se. I suggest that the term “fragmentation” should be reserved for the breaking apart of habitat, independent of habitat loss.

6,341 citations