scispace - formally typeset
Search or ask a question
Author

James D. Winkler

Other affiliations: Wake Forest University
Bio: James D. Winkler is an academic researcher from GlaxoSmithKline. The author has contributed to research in topics: Arachidonic acid & Phospholipase A2. The author has an hindex of 33, co-authored 55 publications receiving 6640 citations. Previous affiliations of James D. Winkler include Wake Forest University.


Papers
More filters
Journal ArticleDOI
TL;DR: ARV-825 is designed, a hetero-bifunctional PROTAC (Proteolysis Targeting Chimera) that recruits BRD4 to the E3 ubiquitin ligase cereblon, leading to fast, efficient, and prolonged degradation ofBRD4 in all BL cell lines tested.

791 citations

Journal ArticleDOI
TL;DR: The codependence of chronic inflammation and angiogenesis is beginning to be understood, the potential benefits of targetingAngiogenesis in the treatment of chronicinflammation, and of targeting chronic inflammation to affect angiogenic research are begun.
Abstract: Angiogenesis is the growth of new blood vessels from existing ones. It is an important aspect of new tissue development, growth, and tissue repair. It is also a component of many diseases including cancer, blindness, and chronic inflammation such as rheumatoid arthritis (RA) and psoriasis. There is considerable evidence to suggest that angiogenesis and chronic inflammation are codependent; recent studies have begun to reveal the nature of this link, which involves both augmentation of cellular infiltration and proliferation and overlapping roles of regulatory growth factors and cytokines. Through these studies, we have begun to understand the codependence of chronic inflammation and angiogenesis, the potential benefits of targeting angiogenesis in the treatment of chronic inflammation, and of targeting chronic inflammation to affect angiogenesis.

715 citations

Journal ArticleDOI
TL;DR: This study proves that ARV-771, a small-molecule pan-BET degrader based on proteolysis-targeting chimera (PROTAC) technology, demonstrates dramatically improved efficacy in cellular models of CRPC as compared with BET inhibition.
Abstract: Prostate cancer has the second highest incidence among cancers in men worldwide and is the second leading cause of cancer deaths of men in the United States. Although androgen deprivation can initially lead to remission, the disease often progresses to castration-resistant prostate cancer (CRPC), which is still reliant on androgen receptor (AR) signaling and is associated with a poor prognosis. Some success against CRPC has been achieved by drugs that target AR signaling, but secondary resistance invariably emerges, and new therapies are urgently needed. Recently, inhibitors of bromodomain and extra-terminal (BET) family proteins have shown growth-inhibitory activity in preclinical models of CRPC. Here, we demonstrate that ARV-771, a small-molecule pan-BET degrader based on proteolysis-targeting chimera (PROTAC) technology, demonstrates dramatically improved efficacy in cellular models of CRPC as compared with BET inhibition. Unlike BET inhibitors, ARV-771 results in suppression of both AR signaling and AR levels and leads to tumor regression in a CRPC mouse xenograft model. This study is, to our knowledge, the first to demonstrate efficacy with a small-molecule BET degrader in a solid-tumor malignancy and potentially represents an important therapeutic advance in the treatment of CRPC.

558 citations

Journal ArticleDOI
TL;DR: ARRY-142886 is a potent and selective MEK1/2 inhibitor that is highly active in both in vitro and in vivo tumor models.
Abstract: Purpose: The Ras-Raf-mitogen-activated protein kinase kinase (MEK) pathway is overactive in many human cancers and is thus a target for novel therapeutics. We have developed a highly potent and selective inhibitor of MEK1/2. The purpose of these studies has been to show the biological efficacy of ARRY-142886 (AZD6244) in enzymatic, cellular, and animal models. Experimental Design: The ability of ARRY-142886 to inhibit purified MEK1 as well as other kinases was evaluated. Its effects on extracellular signal-regulated kinase (ERK) phosphorylation and proliferation in several cell lines were also determined. Finally, the inhibitor was tested in HT-29 (colorectal) and BxPC3 (pancreatic) xenograft tumor models. Results: The IC50 of ARRY-142886 was determined to be 14 nmol/L against purified MEK1. This activity is not competitive with ATP, which is consistent with the high specificity of compound for MEK1/2. Basal and epidermal growth factor–induced ERK1/2 phosphorylation was inhibited in several cell lines as well as 12-O-tetradecanoylphorbol-13-acetate–induced ERK1/2 phosphorylation in isolated peripheral blood mononuclear cells. Treatment with ARRY-142886 resulted in the growth inhibition of several cell lines containing B-Raf and Ras mutations but had no effect on a normal fibroblast cell line. When dosed orally, ARRY-142886 was capable of inhibiting both ERK1/2 phosphorylation and growth of HT-29 xenograft tumors in nude mice. Tumor regressions were also seen in a BxPC3 xenograft model. In addition, tumors remained responsive to growth inhibition after a 7-day dosing holiday. Conclusions: ARRY-142886 is a potent and selective MEK1/2 inhibitor that is highly active in both in vitro and in vivo tumor models. This compound is currently being investigated in clinical studies.

546 citations

Journal ArticleDOI
15 Jul 1999-Oncogene
TL;DR: Results suggest that Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway and might not only delay mitotic entry, but also increase the capacity of cultured cells to survive after treatment with γ-radiation or with the topoisomerase-I inhibitor topotecan.
Abstract: In response to DNA damage and replication blocks, cells activate pathways that arrest the cell cycle and induce the transcription of genes that facilitate repair. In mammals, ATM (ataxia telangiectasia mutated) kinase together with other checkpoint kinases are important components in this response. We have cloned the rat and human homologs of Saccharomyces cerevisiae Rad 53 and Schizosaccharomyces pombe Cds1, called checkpoint kinase 2 (chk2). Complementation studies suggest that Chk2 can partially replace the function of the defective checkpoint kinase in the Cds1 deficient yeast strain. Chk2 was phosphorylated and activated in response to DNA damage in an ATM dependent manner. Its activation in response to replication blocks by hydroxyurea (HU) treatment, however, was independent of ATM. Using mass spectrometry, we found that, similar to Chk1, Chk2 can phosphorylate serine 216 in Cdc25C, a site known to be involved in negative regulation of Cdc25C. These results suggest that Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Activation of Chk2 might not only delay mitotic entry, but also increase the capacity of cultured cells to survive after treatment with gamma-radiation or with the topoisomerase-I inhibitor topotecan.

454 citations


Cited by
More filters
Journal ArticleDOI
30 Jan 2003-Nature
TL;DR: It is shown that ATM is held inactive in unirradiated cells as a dimer or higher-order multimer, with the kinase domain bound to a region surrounding serine 1981 that is contained within the previously described ‘FAT’ domain.
Abstract: The ATM protein kinase, mutations of which are associated with the human disease ataxia-telangiectasia, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer or higher-order multimer, with the kinase domain bound to a region surrounding serine 1981 that is contained within the previously described 'FAT' domain. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. Most ATM molecules in the cell are rapidly phosphorylated on this site after doses of radiation as low as 0.5 Gy, and binding of a phosphospecific antibody is detectable after the introduction of only a few DNA double-strand breaks in the cell. Activation of the ATM kinase seems to be an initiating event in cellular responses to irradiation, and our data indicate that ATM activation is not dependent on direct binding to DNA strand breaks, but may result from changes in the structure of chromatin.

3,411 citations

Journal ArticleDOI
23 Nov 2000-Nature
TL;DR: The inability to repair DNA damage properly in mammals leads to various disorders and enhanced rates of tumour development, and this work has shown that direct activation of DNA repair networks is needed to correct this problem.
Abstract: The inability to repair DNA damage properly in mammals leads to various disorders and enhanced rates of tumour development. Organisms respond to chromosomal insults by activating a complex damage response pathway. This pathway regulates known responses such as cell-cycle arrest and apoptosis (programmed cell death), and has recently been shown to control additional processes including direct activation of DNA repair networks.

3,230 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity is presented.
Abstract: Transcriptional regulation in eukaryotes occurs within a chromatin setting, and is strongly influenced by the post-translational modification of histones, the building blocks of chromatin, such as methylation, phosphorylation and acetylation. Acetylation is probably the best understood of these modifications: hyperacetylation leads to an increase in the expression of particular genes, and hypoacetylation has the opposite effect. Many studies have identified several large, multisubunit enzyme complexes that are responsible for the targeted deacetylation of histones. The aim of this review is to give a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity. SAGE (serial analysis of gene expression) data show that HDACs are generally expressed in almost all tissues investigated. Surprisingly, no major differences were observed between the expression pattern in normal and malignant tissues. However, significant variation in HDAC expression was observed within tissue types. HDAC inhibitors have been shown to induce specific changes in gene expression and to influence a variety of other processes, including growth arrest, differentiation, cytotoxicity and induction of apoptosis. This challenging field has generated many fascinating results which will ultimately lead to a better understanding of the mechanism of gene transcription as a whole.

2,822 citations

Journal ArticleDOI
TL;DR: Recent advances in the understanding of the molecular events that underlie the anticancer effects of HDAC inhibitors are summarized and how such information could be used in optimizing the development and application of these agents in the clinic, either as monotherapies or in combination with other anticancer drugs are discussed.
Abstract: Histone deacetylases (HDACs) are enzymes involved in the remodelling of chromatin, and have a key role in the epigenetic regulation of gene expression. In addition, the activity of non-histone proteins can be regulated through HDAC-mediated hypo-acetylation. In recent years, inhibition of HDACs has emerged as a potential strategy to reverse aberrant epigenetic changes associated with cancer, and several classes of HDAC inhibitors have been found to have potent and specific anticancer activities in preclinical studies. However, such studies have also indicated that the effects of HDAC inhibitors could be considerably broader and more complicated than originally understood. Here we summarize recent advances in the understanding of the molecular events that underlie the anticancer effects of HDAC inhibitors, and discuss how such information could be used in optimizing the development and application of these agents in the clinic, either as monotherapies or in combination with other anticancer drugs.

2,777 citations

Journal ArticleDOI
TL;DR: Recent progress is described in understanding of how cells detect and signal the presence and repair of one particularly important form of DNA damage induced by ionizing radiation—the DNA double-strand break (DSB).
Abstract: To ensure the high-fidelity transmission of genetic information, cells have evolved mechanisms to monitor genome integrity. Cells respond to DNA damage by activating a complex DNA-damage-response pathway that includes cell-cycle arrest, the transcriptional and post-transcriptional activation of a subset of genes including those associated with DNA repair, and, under some circumstances, the triggering of programmed cell death. An inability to respond properly to, or to repair, DNA damage leads to genetic instability, which in turn may enhance the rate of cancer development. Indeed, it is becoming increasingly clear that deficiencies in DNA-damage signaling and repair pathways are fundamental to the etiology of most, if not all, human cancers. Here we describe recent progress in our understanding of how cells detect and signal the presence and repair of one particularly important form of DNA damage induced by ionizing radiation-the DNA double-strand break (DSB). Moreover, we discuss how tumor suppressor proteins such as p53, ATM, Brca1 and Brca2 have been linked to such pathways, and how accumulating evidence is connecting deficiencies in cellular responses to DNA DSBs with tumorigenesis.

2,385 citations